检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方中理 邹永显 李璐 袁子乔[1] 王勇[1] FANG Zhongli;ZOU Yongxian;LI Lu;YUAN Ziqiao;WANG Yong(Xi'an Electronic Engineering Research Institute,Xi'an 710100;Army Research Institute,Beijing 100072)
机构地区:[1]西安电子工程研究所,西安710100 [2]陆军研究院,北京100072
出 处:《火控雷达技术》2024年第1期67-71,共5页Fire Control Radar Technology
摘 要:在传统基于粒子滤波的检测前跟踪算法中,需要使用大量粒子的概率分布来预测下一时刻目标位置,这就带来了计算量的增加,如果使用的粒子数目少,会导致跟踪的准确性降低,本文使用特征提取分类的方式,在进行目标跟踪之前,对目标和杂波进行分类。以此来缩小粒子生成的范围,从而达到提高算法精度、降低算法复杂度的目的。仿真结果显示,经过改进后的粒子滤波算法的误差有了明显降低,同时,将算法应用在雷达的实测数据上有较好的效果,具有工程应用的价值。In traditional particle filter based TBD algorithm,a large number of particle probability distributions are required to predict the target position at the next moment,which increases the computational complexity.If a small number of particles are used,it can also lead to a decrease in tracking accuracy.In this paper,the traditional particle filter TBD by adding the feature extraction was modified,in which the feature extraction is used to classify the target scope and clutter scope before target tracking to narrow down the scope of particle generation.The simulation results showed that the modified particle filter algorithm had significantly improved tracking performance compared to traditional particle filter algorithms.When the algorithm was applied to radar measured data,it also has good results with engineering application value.
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.22