检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高广军 项涛[1,2,3] 丁艳思 向南燊 许澳 张洁 GAO Guangjun;XIANG Tao;DING Yansi;XIANG Nanshen;XU Ao;ZHANG Jie(State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,Changsha 410075,China;Key Laboratory of Traffic Safety on Track of Ministry of Education,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,China;National&Local Joint Engineering Research Center of Safety Technology for Rail Vehicle,Changsha 410075,China)
机构地区:[1]重载快捷大功率电力机车全国重点实验室,湖南长沙410075 [2]中南大学交通运输工程学院,轨道交通安全教育部重点实验室,湖南长沙410075 [3]轨道交通列车安全保障技术国家地方联合工程研究中心,湖南长沙410075
出 处:《中南大学学报(自然科学版)》2024年第3期1188-1200,共13页Journal of Central South University:Science and Technology
基 金:国家重点研发计划项目(2020YFA0710903);国家铁路集团有限公司科技研究开发计划项目(K2021J004-B)。
摘 要:受电弓作为高速列车上不可或缺的部件,其结构特性直接影响高速列车整车气动性能。采用数值仿真方法,基于三维稳态SST k-ω模型,分析高速受电弓不同安装形式对高速列车气动性能的影响以及各节车辆气动阻力的变化规律,并进一步研究其横风环境适应性。研究结果表明:当高速列车在明线运行时,高速受电弓不同安装形式对整车气动性能影响较小,但受电弓所在车辆的气动阻力变化较大;与闭口-升前弓工况相比,受电弓开口-升前弓时整车气动阻力减小2.10%,其中第6节车气动阻力减小6.06%;在横风条件下,受电弓开口-升前弓时整车横风稳定性能较优,与开口-升后弓工况相比,整车横向力与倾覆力矩分别降低2.52%和3.48%,其中第6节车横向力和倾覆力矩分别减少11.13%与18.50%。因此,在明线有无横风条件下,受电弓安装形式为开口-升前弓的气动性能均最优,且升前弓能改善受电弓后区域的流场结构,从而达到改善整车气动性能的目的。As an integral component of high-speed trains,the structural characteristics of pantographs have a direct impact on the aerodynamic performance of high-speed trains.A numerical simulation method was adopted,based on the three-dimensional steady-state SST k−ωmodel,to analyze the effects of various installation forms of high-speed pantographs on the aerodynamic performance of high-speed train.Furthermore,the change in the aerodynamic drag of each vehicle section was analyzed and its adaptability in a cross-wind environment was explored.The results show that when the high-speed train is running in the open line,the different installation forms of high-speed pantographs have a small effect on the aerodynamic performance of the whole car,but the aerodynamic drag of the vehicle in which the pantograph is located varies considerably.Compared with the knuckle-upstream and front-lifted pantograph condition,the knuckle-downstream and front-lifted pantograph condition reduces the aerodynamic drag of the entire train by 2.10%.Notably,the aerodynamic drag of the sixth car is decreased by 6.06%.In cross-wind conditions,the cross-wind stability of the whole car is better when the pantograph is configured as knuckle-downstream and front-lifted.In contrast to the knuckle-downstream and front-lifted pantograph settings,the force and overturning moment of the whole car are reduced by 2.52%and 3.48%,respectively.Remarkably,the transverse force and overturning moment of the sixth car decrease by 11.31%and 18.50%,respectively.Therefore,the aerodynamic performance of the pantograph arrangement with or without crosswind on the open line is optimal for knuckle-downstream and front-lifted pantograph.Moreover,the elevated front pantograph contributes to refining the flow field arrangement in the zone behind the pantograph,ultimately accomplishing the objective of enhancing the aerodynamic performance of the entire vehicle.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38