检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:年光跃 黄建云 潘海啸[1] NIAN Guangyue;HUANG Jianyun;PAN Haixiao(College of Architecture and Urban Planning,Tongji University,Shanghai 200092,China;School of Design,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]同济大学建筑与城市规划学院,上海200092 [2]上海交通大学设计学院,上海200240
出 处:《交通运输研究》2024年第1期10-17,27,共9页Transport Research
基 金:国家自然科学基金区域创新发展联合基金项目(U20A20330)。
摘 要:针对出租车随意停靠给城市交通带来的负面影响,为规范出租车营运秩序、改善出租车营运环境和居民乘车条件,提出一种将出租车出行空间信息与机器学习算法相结合的出租车停靠站点布局规划方法。首先利用出租车GPS轨迹数据提取出租车出行起点,然后采用HDBSCAN聚类算法对起点进行空间密度聚类,形成聚类簇后以其中心点作为出租车停靠站点布局的备选点。最后,为验证所提方法的可行性和有效性,选取重庆市中心城区一土地利用类型丰富、人口密度高的典型区域进行案例分析。结果显示,107个备选点主要分布于商业中心区和居住集中区,与出租车出行高需求区域的空间分布基本吻合;布局的出租车停靠站点在300 m范围内的覆盖率达到76.0%,未覆盖区域主要为城市绿地和水体。研究表明,机器学习算法可实现出租车停靠站点的高效布局规划,但在规划和实施阶段,停靠站点的设置还应结合邻近区域的建成环境特点综合考虑。The arbitrary stopping of taxis has caused a certain negative effect on urban traffic.In order to regulate the order of taxi operation,improve the conditions of taxi operation and residents'riding,a taxi stand layout planning method which combined the spatial information of taxi trips with machine learning algorithms was proposed.Firstly,the GPS trajectory data of taxis was used to extract the origins of taxi trips.Then,the HDBSCAN clustering method was used to perform spatial density clustering on the origins of taxi trips,the clusters were formed and their centers were used as alternative locations for the layout of taxi stands.Finally,to verify the feasibility and efficiency of the proposed method,a typical area with rich land use types and high population density in the central urban area of Chongqing was selected as an example for case analysis.The results showed that the 107 alternative locations were mainly located in commercial centers and residential areas,which was basically consistent with the spatial distribution of areas with high taxi demand.The 300-meter coverage rate of taxi stands in the layout reached 76.0%,and the uncovered areas were mainly urban green spaces and water bodies.Research has shown that machine learning algorithm can achieve efficient layout planning of taxi stands,but in the planning and implementation stages,the setting of parking space should also be comprehensively considered in conjunction with the characteristics of the built environment in adjacent areas.
关 键 词:城市交通 布局规划 空间聚类 出租车停靠站点 轨迹数据 机器学习算法 HDBSCAN
分 类 号:U491[交通运输工程—交通运输规划与管理] TU981[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44