车路协同环境下交叉路口多车速度优化研究  

Multi-Vehicle Speed Optimization at Intersections in a Vehicle-Road Cooperative Environment

在线阅读下载全文

作  者:陈峥[1] 闫宇飞 沈世全 CHEN Zheng;YAN Yufei;SHEN Shiquan(Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650500,China)

机构地区:[1]昆明理工大学交通工程学院,云南昆明650500

出  处:《昆明理工大学学报(自然科学版)》2024年第2期151-160,共10页Journal of Kunming University of Science and Technology(Natural Science)

基  金:国家自然科学基金项目(52272395)。

摘  要:为减少智能网联电动车辆在城市交叉路口工况下行驶的能耗,并制止车辆在车队中的碰撞,提出一种车路协同环境下的智能网联电动车辆速度优化与避撞分层耦合控制系统.上层模型基于交通信号灯相位时序与车辆动力学模型进行车辆速度优化;下层结合优化后速度和模型预测控制进一步优化车队内车辆车速,防止与前车发生碰撞.利用Matlab平台搭建控制系统仿真模型,并基于车辆队列通过交叉路口的工况对所提出的分层耦合控制系统进行有效性验证.仿真结果表明,分层耦合控制系统可根据交通工况不同,计算出能耗最低且避免碰撞的最优速度曲线,所提出的系统能够确保智能网联电动车辆更加节能、安全地稳定行驶.To reduce the energy consumption of intelligent network-connected electric vehicles at urban intersections and prevent collisions within the vehicle platoon,a hierarchical coupled control system for speed optimization and collision avoidance of intelligent network-connected electric vehicles in a vehicle-road cooperative environment is proposed.The upper-level model optimizes vehicle speed based on the traffic signal light phase timing and vehicle dynamics model;the lower level combines the optimized speed and model predictive control to further optimize the speed within the vehicle platoon,preventing collisions with the vehicle ahead.A control system simulation model is built on the Matlab platform,and the effectiveness of the proposed hierarchical coupled control system is verified based on the scenario of vehicle queues passing through intersections.Simulation results show that the hierarchical coupled control system calculates the optimal speed curve with the lowest energy consumption and avoidance of collisions,varying with traffic conditions.It is evident that the proposed system ensures that intelligent network-connected electric vehicles can drive more energy-efficiently and safely.

关 键 词:车路协同 智能网联电动车辆 速度优化 节能优化 主动避撞 分层控制 

分 类 号:U495[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象