检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:路龙飞 王峻峰[1] 赵世闻 李广 丁鑫涛 LU Longfei;WANG Junfeng;ZHAO Shiwen;LI Guang;DING Xintao(School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)
机构地区:[1]华中科技大学机械科学与工程学院,湖北武汉430074
出 处:《图学学报》2024年第2期250-258,共9页Journal of Graphics
基 金:国防基础科研计划资助(JCKY2021203B072)。
摘 要:针对传统机器人轴孔装配方法建立精确几何接触模型难、学习方法需要样本大和初始姿态偏差大且成功率低的问题,提出了一种基于力位感知装配技能学习的机器人轴孔柔顺装配方法。在搜孔阶段均匀采集轴未入孔的力和力矩样本数据,构建力-动作数据集,搭建多层感知机(MLP)和注意力模块网络进行监督学习、生成力-动作映射判别模型,根据装配过程中的六维力信号预测下一步装配动作,减小轴中心线与孔中心线的夹角和距离,完成轴孔对准操作;在插孔阶段设计了一种以位置控制为内环的柔顺控制算法,通过设置轴端面的期望接触力,在六维力传感器数据反馈的作用下以主动顺应方式实时调整轴的位置和方向。以最小间隙为0.1 mm的单轴孔为对象,设计了100组装配实验,在平均时间为15.1s内的装配成功率为94%。通过与其他装配方法比较,提高了轴孔装配的效率和成功率。Traditional methods for robot peg-in-hole assembly face challenges in constructing accurate geometric contact models and learning methods that require large samples with a high initial attitude deviation leading to a low assembly success rate.A compliant robot peg-in-hole assembly method was proposed based on the skill learning of force-position perception.During the hole search stage,the force and torque sample data for the peg missing the hole were uniformly collected,constructing a force-action dataset.A multi-layer perceptron and an attention module network were constructed for supervised learning,generating a discriminant model for mapping force to action.Based on the six-dimensional force signal in the assembly process,the method predicted the next assembly action,while reducing both the angle and distance between the peg center line and hole center line to achieve proper alignment of the peg and the hole.During the hole insertion stage,a compliance control algorithm was designed with position control as its inner loop.By setting desired contact forces on the end face of the peg,real-time adjustments were made to both the position and orientation of peg parts using active compliance techniques based on feedback from a six-dimensional force sensor.To validate its effectiveness,100 sets of assembly experiments were conducted using a single axle hole with a minimum clearance of 0.1 mm.The method achieved an average success rate of 94%within an average time of 15.1 seconds.Comparative analysis with other assembly algorithms demonstrated that the force-position perception assembly method based on skill learning significantly enhanced efficiency and success rate in peg-in-hole assemblies.
关 键 词:轴孔装配 力位感知 技能学习 注意力机制 阻抗控制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.95.159