检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李臣旭 江浩斌[2] 马世典[2] 侯桐 LI Chenxu;JIANG Haobin;MA Shidian;HOU Tong(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,Jiangsu,China)
机构地区:[1]江苏大学汽车与交通工程学院,江苏镇江212013 [2]江苏大学汽车工程研究院,江苏镇江212013
出 处:《重庆交通大学学报(自然科学版)》2024年第5期113-123,共11页Journal of Chongqing Jiaotong University(Natural Science)
基 金:国家自然科学基金项目(51675235);江苏省高校自然科学基金项目(16KJA58000);江苏省产学研前瞻性联合创新项目(BY2012173)。
摘 要:针对泊车过程中转向系统非线性因素影响车辆位姿估计准确度的问题,提出了一种基于车辆转向状态的分段位姿估计方法,提高自动泊车过程中的车辆位姿估计精度。首先,通过试验对车辆运动学航迹推算法定位的误差来源进行分析,确定了转向过程的非线性因素对泊车过程中车辆位姿计算准确度的影响;其次,设计了基于车辆转向状态的分段位姿估计模型,使用LSTM对转向状态进行实时分类,分别训练混合模型进行位姿估计,并对分类结果与位姿估计结果进行后验修正;再次,构建泊车工况车辆横纵向位移数据集,基于数据集对所建模型进行训练和离线测试;最后,利用Python搭建在线测试平台,对模型进行位姿估计测试,并开展对比试验。试验结果表明:该方法能够将泊车过程中的车辆欧式距离误差控制在10 cm以内,航向角误差控制在1°以内。基于车辆转向状态的分段位姿估计方法研究,可以有效提高泊车过程中的车辆位姿估计精度,并具有较高的实时性和较好的鲁棒性。In order to solve the problem that nonlinear factors of steering system affected the accuracy of vehicle pose estimation during parking,a segmented pose estimation method based on vehicle steering state was proposed to improve the accuracy of vehicle pose estimation during automatic parking.Firstly,the error sources of the vehicle kinematic trajectory prediction positioning method were analyzed through experiments,and the influence of nonlinear factors in the steering process on the accuracy of vehicle pose calculation during parking was determined.Secondly,the segmented pose estimation model based on vehicle steering state was designed.LSTM was used to classify the steering state in real time,the hybrid model was trained separately for pose estimation,and posterior correction on the classification results and pose estimation results were carried out.Then,the data set of vehicle transverse and longitudinal displacement under parking condition was constructed.The data set was used for training the established model and offline testing.Finally,Python was used to build an online test platform to test the pose estimation of the proposed model,and a comparative experiment was carried out.The test results show that the European distance error of the vehicle can be controlled within 10 cm and the heading angle error can be controlled within 1°during parking through the proposed method.The segmented pose estimation method based on vehicle steering state can effectively improve the accuracy of vehicle pose estimation during parking and has relatively higher real-time performance and better robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.149.154