检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申燚[1,2] 赵泽钰 袁明新 刘维[3] SHEN Yi;ZHAO Ze-yu;YUAN Ming-xin;LIU Wei(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Zhangjiagang Industrial Technology Research Institute,Jiangsu University of Science and Technology,Zhangjiagang 215600,China;T-SEA Marine Technology Co.,Ltd.,Zhangjiagang 215600,China)
机构地区:[1]江苏科技大学机械工程学院,镇江212100 [2]张家港江苏科技大学产业技术研究院,张家港215600 [3]中科探海(苏州)海洋科技有限责任公司,张家港215600
出 处:《科学技术与工程》2024年第13期5427-5435,共9页Science Technology and Engineering
基 金:工信部高技术船舶科研项目([2019]360号);张家港市科技计划(ZKC2206,ZKYY2253)。
摘 要:为了实现无人船自主导航过程中对障碍物的精确检测,提出了一种基于四叉树扇形层值聚类的无人船障碍物检测方法。首先基于四叉树扇形划分进行障碍物点云数据的检索,并剔除扇形象限内不可信数据;然后利用所获得的四叉树层值来求取全局密度距离,进而获得层值阈值,以此来对不规则多线形障碍物特征进行检测;最后通过建立数据点之间的空间拓扑关系来求取参考距离,并以参考距离为基准对障碍物点云数据进行聚类判定,提高聚类分割准确性。多线形障碍物特征识别性能测试及水面无人船障碍物检测实验结果表明,相较于其他密度聚类算法,在正检率、误检率和漏检率性能指标方面,多线形障碍物特征识别性能测试中,所提算法分别平均下降了9.86%、5.04%、3.10%,水面无人船障碍物检测中,所提算法分别平均下降了10.50%、6.97%、2.95%。In order to realize the precise detection of obstacles in the process of autonomous navigation of unmanned ships,an obstacle detection method for unmanned ships based on quadtree sector layer value clustering was proposed.Firstly,the obstacle point cloud data was retrieved based on the quadtree sector division,and the untrustworthy data in the sector image limit was eliminated.Secondly,the obtained quadtree layer value was used to calculate the global density distance,and then the layer value threshold was obtained to detect irregular multi-linear obstacle features.Finally,the reference distance was obtained by establishing the spatial topological relationship between data points,and the obstacle point cloud data was clustered and judged based on the reference distance to improve cluster segmentation accuracy.The results of multi-linear obstacle feature recognition performance test and surface unmanned ship obstacle detection experiment show that compared with other density clustering algorithms,in terms of positive detection rate,false detection rate and missed detection performance index,the proposed algorithm decreases by 9.86%,5.04%and 3.10%respectively during multi-linear obstacle feature recognition performance test,and the proposed algorithm decreases by 10.50%,6.97%and 2.95%respectively during surface unmanned ship obstacle detection experiment.In the performance indicators of positive detection rate,false detection rate,and missed detection rate.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.247.168