基于神经网络干扰观测器的巷道机器人鲁棒控制方法研究  

Research on Robust Control Method of Roadway Robot Based on Neural Network Interference Observer

在线阅读下载全文

作  者:牛光勇 李少飞 王云飞[2] 刘春[2] Niu Guangyong;Li Shaofei;Wang Yunfei;Liu Chun(Yuwu Coal Industry Co.,Ltd.,Shanxi Lu’an Group,Changzhi 046100,China;China University of Mining and Technology,Xuzhou 221116,China)

机构地区:[1]山西潞安集团余吾煤业有限责任公司,山西长治046100 [2]中国矿业大学,江苏徐州221116

出  处:《煤矿机械》2024年第6期195-198,共4页Coal Mine Machinery

基  金:中国矿业大学安全学科群“双一流”建设提升自主创新能力课题(2022ZZCX-AQ06)。

摘  要:以巷道机器人铲斗油缸电液控制系统为研究对象,提出了一种基于神经网络干扰观测器的鲁棒控制器来提高强时变负载力工况下油缸的控制水平。该控制器利用神经网络的学习功能,实时估计和补偿未知负载力。采用反步法设计了鲁棒控制器并进行了系统稳定性的验证。通过Simulink/Simscape搭建了铲斗油缸系统的物理模型,并进行了仿真分析。神经网络干扰观测器可有效完成对未知负载力的实时估计,经过负载力补偿后的鲁棒控制器相对PID控制器精度提高了约79%。Electro-hydraulic control system of bucket cylinder of roadway robot was taken as research object,and a robust controller based on neural network interference observer was proposed to improve the control level of cylinder under strong time-varying load conditions.The controller uses the learning function of neural network to estimate and compensate the unknown load in real time.The robust controller was designed by backstepping method and the stability of the system was proved.The physical model of bucket cylinder system was built by Simulink/Simscape,and the simulation analysis was carried out.The neural network interference observer can effectively estimate the unknown load in real time,and the accuracy of the robust controller after load compensation is improved by about 79%compared with PID controller.

关 键 词:巷道机器人 神经网络 干扰观测器 Simscape 

分 类 号:TD421[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象