基于优化RBF神经网络在电能质量扰动分类中的应用  被引量:2

Application of Optimized RBF Neural Network in Power Quality Disturbance Classification

在线阅读下载全文

作  者:姚宇 方忠强 张坤 胡慧江 刘宏伟[2] YAO Yu;FANG Zhongqiang;ZHANG Kun;HU Huijiang;LIU Hongwei(CHINA Design Group,Nanjing 210014,China;College of Electrical and Engineering,Chang’an University,Xi’an 710018,China)

机构地区:[1]华设设计集团股份有限公司,南京江苏210014 [2]长安大学能源与电气工程学院,西安陕西710018

出  处:《现代建筑电气》2024年第4期28-35,共8页Modern Architecture Electric

摘  要:为保证建筑中智能电子产品安全运行,解决实际工程中电能质量扰动识别分类准确率低、抗噪性差等问题,提出一种基于优化RBF神经网络识别电能质量扰动的方法。首先,将20种电能质量扰动信号通过S变换进行时频域分析,提取出的扰动时频域特征数据划分为测试集和训练集;然后,构建径向基函数(RBF)神经网络电能质量扰动分类模型;其次,引入蜣螂优化算法(DBO)对RBF神经网络参数进行参数优化;最后,将划分好的训练集和测试集输入到优化后的神经网络中进行扰动分类。仿真及工程实验表明,提出的方法对于电能质量扰动识别准确率高,抗噪性及泛化能力强。To ensure the safe operation of intelligent electronic products in buildings,a method based on an optimized RBF neural network for identifying power quality disturbances is proposed,which addresses issues such as low accuracy in power quality disturbance classification and poor noise resistance in practical engineering.Firstly,20 types of power quality disturbance signals were subjected to time-frequency domain analysis through S-transform,and the extracted disturbance time-frequency domain feature data was divided into a test set and a training set;Then,a radial basis function(RBF)neural network power quality disturbance classification model;Secondly,the Dung Beetle Optimizer(DBO)algorithm is introduced to optimize the parameters of the RBF neural network;Finally,input the divided training and testing sets into the optimized neural network for disturbance classification.Simulation and engineering experiments have shown that the proposed method has high accuracy in identifying power quality disturbances,strong noise resistance,and generalization ability.

关 键 词:电能质量 扰动分类 径向基函数 神经网络 蜣螂优化算法 S变换 特征提取 

分 类 号:TU852[建筑科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象