检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张菀 张泰瑀 贾民平[3] 蔡骏[1] Zhang Wan;Zhang Taiyu;Jia Minping;Cai Jun(Department of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center for Atmospheric Environment and Equipment Technology,Nanjing 210044,China;School of Mechanical Engineering,Southeast University,Nanjing 211102,China)
机构地区:[1]南京信息工程大学自动化学院,南京210044 [2]江苏省大气环境与装备技术协同创新中心,南京210044 [3]东南大学机械工程学院,南京211102
出 处:《仪器仪表学报》2024年第3期84-93,共10页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金资助项目(52077105);江苏省自然科学基金资助项目(BK20211285);先进数控和伺服驱动技术安徽省重点实验室(安徽工程大学)开放基金资助项目(XJSK202105)资助。
摘 要:轴承作为电机的核心部件,主要起到支撑引导轴、减小设备摩擦、连接不同设备等作用,其剩余寿命预测对系统健康管理起着十分重要的作用。针对单一传感器信号通常难以全面描述系统的潜在退化机制,论文提出一种基于多头注意力机制和长短时记忆神经网络的电机轴承剩余寿命预测模型。首先,基于马氏距离确定轴承性能退化起始点,将滚动轴承全寿命周期分为正常阶段与退化阶段;其次,使用自编码器自动提取振动信号特征,并将其与电机电流、轴承温度融合,构成多源信息特征矩阵;然后基于多头注意力机制和长短时记忆网络模型动态选择相关度较高的特征,提高寿命预测的准确性。最后,采用实验数据进行验证,结果表明所提出的模型具有更高的准确性。As a core component of motors,bearings primarily serve functions such as supporting and guiding shafts,reducing friction in equipment,and connecting different components.Predicting the remaining life of bearings is crucial for system health management.However,single sensor signals often fail to comprehensively describe the potential degradation mechanisms of the system.This paper proposes a novel approach for predicting the remaining life of motor bearings based on the multi-head attention mechanism and long short-term memory neural network.Firstly,Mahalanobis distance is used to determine the starting point of bearing performance degradation by dividing the entire life cycle of rolling bearings into normal and degradation phases.Secondly,an Autoencoder is employed to automatically extract vibration signal features,which are subsequently fused with motor current and bearing temperature signal to construct a multi-source information feature matrix.Subsequently,the multi-head attention mechanism and long short-term memory network dynamically select features with high relevance,thereby improving the accuracy of the remaining life prediction.Finally,the model is validated using experimental data,and the results show that the proposed model has higher accuracy.
关 键 词:电机轴承 多传感器融合 多头注意力机制 长短期记忆网络 剩余寿命预测
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.14.81