执行器故障下无人机无人车异构编队控制  

Formation Tracking Control for Heterogeneous Unmanned Aerial Vehicle-Unmanned Ground Vehicle Systems Under Actuator Faults

在线阅读下载全文

作  者:杨荟憭 张博[1] 胡猛 YANG Huiliao;ZHANG Bo;HU Meng(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100)

机构地区:[1]河海大学能源与电气学院,南京211100

出  处:《飞控与探测》2024年第1期14-20,共7页Flight Control & Detection

基  金:国家自然科学基金青年项目(62003130);中央高校基本科研业务费(B230201055)。

摘  要:针对存在执行器故障的无人机无人车异构系统,研究了编队跟踪容错控制问题。首先,异构系统采用有向图的拓扑结构,且并非所有无人机/车都能接收到参考信号,故在充分考虑无人机/车运动学模型存在较大差异的前提下,设计了一种针对两类系统都通用的分布式信号估计器来获取参考信号的信息。然后,基于参考信号估计值,利用鲁棒自适应控制理论,提出了形式统一的分布式容错控制协议。该协议无需获取精准故障信息,就能有效地补偿故障对异构系统性能的影响,确保异构系统在故障情况下仍能按照预先设定的编队构型跟踪上外界参考信号。最后,通过仿真试验验证了所提算法的有效性。The fault-tolerant formation tracking control problem for heterogeneous unmanned aerial vehicle-unmanned ground vehicle(UAV-UGV)systems under actuator faults is studied in this paper.First,since the topology of UAV-UGV systems is considered as directed spanning tree and only a few vehicles can receive the information of reference signals,distributed estimators which are universal for both UAV and UGV systems are designed to obtain the unknown reference signals by fully considering the apparent distinction between UAV dynamics and UGV dynamics.Then,based on the estimation results,universal distributed fault tolerant protocols are proposed for UAV-UGV systems by utilizing robust adaptive control theory.The proposed protocols can effectively compensate for the fault effects on the system performance without obtaining accurate fault information,as a result,the UAV-UGV systems are guaranteed to maintain a predesigned formation while tracking the reference signals even in the presence of actuator faults.Finally,the effectiveness of the proposed protocols is verified by the simulations.

关 键 词:无人机无人车异构系统 容错控制 编队控制 执行器故障 轨迹跟踪 

分 类 号:TP14[自动化与计算机技术—控制理论与控制工程] TP391.9[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象