基于熵的微阵列数据特征选择  

Entropy-based feature selection for microarray data

在线阅读下载全文

作  者:邓蕊欣 李达 金德泉[1] DENG Ruixin;LI Da;JIN Dequan(School of Mathematics and Information Science,Guangxi University,Nanning 530004,China)

机构地区:[1]广西大学数学与信息科学学院,广西南宁530004

出  处:《广西大学学报(自然科学版)》2024年第3期637-643,共7页Journal of Guangxi University(Natural Science Edition)

基  金:广西自然科学基金项目(2022GXNSFAA035519)。

摘  要:针对基于熵的特征加权算法忽略了数据集内在特性对特征重要性的影响,导致特征选择效果不佳的问题,提出一种改进的基于熵的特征加权算法,根据信息熵计算特征维度的重要性权重,通过引入交叉验证实现不同数据集的阈值学习,确定用于度量特征重要性的最佳阈值参数,并基于该阈值对数据集进行特征选择。在微阵列数据集上的数值实验结果表明:相比于原算法,所提算法能够减少更多的维度,且特征子集用于分类得到的准确率与原算法基本持平甚至有所提高,说明改进的算法是可行和有效的。Aiming at the problem that the entropy-based feature weighting algorithm ignores the influence of the intrinsic characteristics of the dataset on the importance of features,which leads to poor feature selection,an improved entropy-based feature weighting algorithm is proposed,which calculates the importance weights of feature dimensions according to the information entropy,achieves threshold learning of different datasets by introducing cross-validation,so as to determines the optimal threshold parameter used to measure the importance of the features,and performs feature selection of the dataset based on this threshold.The numerical experimental results on the microarray dataset show that the proposed algorithm is able to reduce more dimensions than the original algorithm,and the accuracy of the feature subset used for classification is basically the same as the original algorithm or even better than that,which indicates that the improved algorithm is feasible and effective.

关 键 词:特征选择 微阵列数据 分类 信息熵 交叉验证 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象