检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范振成 Fan Zhencheng(School of Computer and Big Data,Minjiang University,Fuzhou 350108)
机构地区:[1]闽江学院计算机与大数据学院,福州350108
出 处:《高等学校计算数学学报》2024年第2期177-192,共16页Numerical Mathematics A Journal of Chinese Universities
基 金:福建省自然科学基金(2021J011031);福建省发树慈善基金会资助研究专项(MFK23013.)。
摘 要:1引言在芯片(大规模集成电路)设计领域,仿真计算作用重大.描述芯片的数学模型一般是超高维的微分代数方程组,使用诸如线性多步法、Runge-Kutta(RK)法等经典数值方法等求解时,因运算量太大而效果不理想.为了求解这些方程,Lelarasmee等提出了波形松弛(WR)方法[1],它具有并行性和多速率两个优点,与经典方法相比更具优势.The waveform relaxation(WR)method can solve effectively the weakly coupled differential equations with very high dimensions.Many models in practical applications are stiff,hence they need to be solved by the WR methods with very good property of stability such as A-stability.We present the unconditionally linear stability by extending A-stability to the high dimensional test equation,which can help investigate the influence of splitting way on stability of WR methods.In this paper,we obtain some sufficient conditions of the unconditionally linear stability of WR methods which imply that the splitting way is also the key effective factor except underlying methods for stability of WR methods.Lastly,we perform some numerical experiments and the results obtained are consistent with theoretical analysis results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.101.186