检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄文琦 梁凌宇[1,2] 王鑫 赵翔宇[1,2] 宗珂[2,3,4] 孙凌云 HUANG Wenqi;LIANG Lingyu;WANG Xin;ZHAO Xiangyu;ZONG Ke;SUN Lingyun(China Southern Power Grid Digital Grid Research Institute Co.,Ltd.,Guangzhou 510663,China;Zhejiang University-China Southern Power Grid Joint Research Centre on AI,Hangzhou 310058,China;College of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China;College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区:[1]南方电网数字电网研究院有限公司,广东广州510663 [2]浙江大学南方电网人工智能创新联合研究中心,浙江杭州310058 [3]浙江大学计算机科学与技术学院,浙江杭州310027 [4]浙江工业大学计算机科学与技术学院,浙江杭州310023
出 处:《浙江大学学报(理学版)》2024年第4期483-491,500,共10页Journal of Zhejiang University(Science Edition)
基 金:国家重点研发计划项目(2020YFB0906000,2020YFB09060005,2020YFB0906004)。
摘 要:准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。Accurate and effective load forecasting is very important for real-time operation and dispatching of power systems.In this paper,a prediction model that incorporates variable selection and sparse Transformer is proposed.Static and temporal variables are used as inputs to give full play to the information enhancement of static variables in the global time range.The variable weighting component is designed based on the gating mechanism with which different weights are assigned to the variables according to their relevance to the predicted output.A two-layer coding structure is designed for temporal feature extraction,attention is sparse,and future moment loads are predicted by multivariate inputs.The proposed model is validated using real power load data,and the experimental results show that it can improve the prediction accuracy and prediction efficiency of mid-long term load forecasting.
关 键 词:电力时序数据 TRANSFORMER 中长期负荷预测 多变量 变量选择
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.109.25