检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周继振 王青青 ZHOU Jizhen;WANG Qingqing(School of mathematics and big data,Anhui University of Science and Technology,Huainan Anhui 232001,China)
机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232001
出 处:《安徽理工大学学报(自然科学版)》2024年第3期76-82,共7页Journal of Anhui University of Science and Technology:Natural Science
基 金:国家自然科学基金资助项目(11801347)。
摘 要:目的为刻画微分复合算子乘积C_(φ)D^(m)在对数Bloch型空间上的本性范数特征。方法利用有界序列{z^(n)}∞n=1刻画对数Bloch型空间上微分复合算子乘积C_(φ)D^(m)的有界性特征,以及泛函分析中的算子理论,例如紧算子性质和对本性范数上下界的估计。结果在C_(φ)D^(m)有界的条件下,给出了微分复合算子C_(φ)D^(m)的本性范数特征,即这里m为非负正整数,微分复合算子乘积为C_(φ)D^(m)f=f(m)°φ。结论在C_(φ)D^(m)有界的条件下,则微分复合算子C_(φ)D^(m)的本性范数可由有界序列{z^(n)}∞n=1的特征刻画。Objective To characterize the boundedness and essential norms of the product of differentiation and composition operators C_(φ)D^(m)on logarithmic Bloch type spaces.Methods A bounded sequence{z^(n)}∞n=1 was used to characterize the boundedness of the product of differential composite operators C_(φ)D^(m)on logarithmic Bloch type spaces and the operator theory in functional analysis,such as the properties of compact operators.Results The essential norm of the product of differentiation and composition operators C_(φ)D^(m)on the logarithmic Bloch type was obtained.Here m is a nonnegative positive integer,and the product of the differentiation and composition operator C_(φ)D^(m)is defined by C_(φ)D^(m)f=f(m)°φ.Conclusion If the product of differential composite operators C_(φ)D^(m)on logarithmic Bloch type spaces is bounded,the essential norm of C_(φ)D^(m)may be characterized by the characteristics of the bounded sequence{z^(n)}.
关 键 词:对数α-Bloch空间 复合算子 微分算子 有界性 本性范数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7