检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王睿 高少泽[1] 刘卫朋 王刚 WANG Rui;GAO Shaoze;LIU Weipeng;WANG Gang(School of Artificial Intelligence,Hebei University of Technology,Tianjin,300131,China;State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China)
机构地区:[1]河北工业大学,人工智能与数据科学学院,天津300131 [2]哈尔滨工业大学,先进焊接与连接国家重点实验室,哈尔滨150001
出 处:《焊接学报》2024年第7期41-49,共9页Transactions of The China Welding Institution
基 金:国家自然科学基金资助项目(62073118)。
摘 要:针对当前深度学习模型在焊缝缺陷检测工作中成本高、速度慢、不易在终端部署应用等问题,提出一种效果良好的轻量级高效模型(lightweight and high-precision optimized detection model,LHODM).首先,搭建新型主干网络并设计超轻量卷积ULConv作为网络基础卷积,降低模型深度,用Depthwise操作生成更多有效冗余特征映射,减少参数与运算量.其次,设计高效轻量级专注模块ELCC,在响应模型轻量化前提下,考虑焊缝缺陷分布特性与成像规律,从水平和垂直两个方向捕获孤立区域关系,结合轻量级上采样算子CARAFE,使模型特征重组时具有更大的感受野,更有效地利用环境周围信息,弥补轻量化造成的精度损失.最后,为提高收敛速度和损失函数效率,设计OS-Io U损失函数,考虑期望回归向量之间的夹角,重新定义惩罚项及相关性,强化距离损失和形状损失关注程度.结果表明,LHODM模型检测准确率和检测速度达到91.62%和63.47帧/s,参数量仅为3.99 M,有效解决了焊缝缺陷检测工作中成本高和速度慢的问题.In response to the high cost,slow speed,and difficulty in deploying deep learning models in weld defect detection,this paper proposes a lightweight and high precision optimized detection model(LHODM)with good performance.Firstly,a new backbone network is built and an ultra lightweight convolutional ULConv is designed as the network foundation convolution to reduce model depth,and Depthwise operation was used to generate more effective redundant feature mappings,reducing the amount of parameters and computation.Secondly,an efficient and lightweight dedicated module ELCC is designed.Under the premise of lightweight response model,the distribution characteristics of weld defects and imaging rules are considered,and the relationship between isolated areas is captured from both horizontal and vertical directions.Combined with the lightweight up-sampling operator CARAFE,the model has a larger receptive field during feature recombination,makes more effective use of ambient information,and makes up for the loss of lightweight accuracy.Finally,in order to improve convergence speed and loss function efficiency,an OS-IoU loss function is designed,taking into account the angle between the expected regression vectors,redefining the penalty term and correlation,and strengthening the attention to distance loss and shape loss.The results showed that the LHODM model achieved detection accuracy and speed of 91.62%and 63.47 frames per second,with a model memory cost of only 3.99 million,effectively solving the problems of high cost and slow speed in weld defect detection work.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30