基于人工神经网络优化米酒糟淀粉水解条件研究  

Optimization of starch hydrolysis conditions of rice wine residue based on artificial neural network

在线阅读下载全文

作  者:徐爽 张钰霜 杨嘉和 陈玉琴 王雨萱 胡芳 刘建忠 程润喜 方尚玲 徐健 XU Shuang;ZHANG Yushuang;YANG Jiahe;CHEN Yuqin;WANG Yuxuan;HU Fang;LIU Jianzhong;CHENG Runxi;FANG Shangling;XU Jian(Hubei Provincial Key Laboratory of Industrial Microbiology,Key Laboratory of Fermentation Engineering(Ministry of Education),Cooperative Innovation Center of Industrial Fermentation(Ministry of Education&Hubei Province),School of Food and Biological Engineering,Hubei University of Technology,Wuhan 430068,China;Road Environment Technology Co.,Ltd.,Wuhan 430075,China)

机构地区:[1]湖北工业大学生物工程与食品学院工业发酵省部共建协同创新中心发酵工程教育部重点实验室工业微生物湖北省重点实验室,湖北武汉430068 [2]路德环境科技股份有限公司,湖北武汉430075

出  处:《中国酿造》2024年第8期237-242,共6页China Brewing

基  金:湖北省重点研发计划项目(2021BGD016);大学生创新创业训练计划项目(202210500018)。

摘  要:为解决米酒糟处理对环境的污染问题,提高米酒糟的利用价值,该研究基于人工神经网络分析对米酒糟的淀粉水解条件进行优化,并在此基础上探究其发酵生产生物丁醇的可行性。结果表明,米酒糟的最佳淀粉水解条件为水解温度64℃,水解时间101 min,水解pH 5.4,中温α-淀粉酶添加量32 U/g,糖化酶添加量170 U/g。在此优化条件下,米酒糟淀粉水解液的还原糖含量为40.49 g/L。以米酒糟淀粉水解液作为原料发酵生产丁醇,丁醇产量达到3.07 g/L。本研究结果为米酒糟的综合利用提供了参考。In order to solve the environmental pollution of rice wine residue treatment and improve the utilization value of rice wine residue,the starch hydrolysis conditions of rice wine residue were optimized based on artificial neural network analysis,and on this basis,the feasibility of fermentation to produce biobutanol was explored.The results showed that the optimal hydrolysis conditions were hydrolysis temperature 64℃,time 101 min,pH 5.4,medium temperatureα-amylase addition 32 U/g,saccharifying enzyme addition 170 U/g.Under these optimal conditions,the reducing sugar content of starch hydrolysate in rice wine residue was 40.49 g/L.Butanol was produced by fermentation with starch hydrolysate of rice wine residue,and the yield of butanol reached 3.07 g/L.The results provided a reference for the comprehensive utilization of rice wine residue.

关 键 词:米酒糟 淀粉水解 工艺优化 神经网络分析 丁醇发酵 

分 类 号:TS261.4[轻工技术与工程—发酵工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象