基于遗传算法和深度神经网络的近红外高光谱检测猪肉新鲜度  被引量:3

Detection of Pork Freshness Using NIR Hyperspectral Imaging Based on Genetic Algorithm and Deep Neural Network

在线阅读下载全文

作  者:谢安国 纪思媛 李月玲 王满生[2] 张玉 XIE Anguo;JI Siyuan;LI Yueling;WANG Mansheng;ZHANG Yu(Zhang Zhongjing School of Chinese Medicine,Nanyang Institute of Technology,Nanyang 473004,China;Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences,Changsha 410205,China;School of Intelligent Manufacturing,Nanyang Institute of Technology,Nanyang 473004,China)

机构地区:[1]南阳理工学院张仲景国医国药学院,河南南阳473004 [2]中国农业科学院麻类研究所,湖南长沙410205 [3]南阳理工学院智能制造学院,河南南阳473004

出  处:《食品工业科技》2024年第17期345-351,共7页Science and Technology of Food Industry

基  金:河南省自然科学基金(202300410131);中国农业科学院科技创新工程(CAAS-ASTIP-IBFC);南阳理工学院科研启动经费(510171)。

摘  要:为系统评估基于深度学习的智能辅助高光谱成像系统在猪肉新鲜度指标检测中的效果,采集了猪肉在4℃冷藏12 d中挥发性盐基氮(volatile basic nitrogen,TVB-N)、菌落总数(total viable count,TVC)以及900~2500 nm近红外光谱数据。基于Python的TensorFlow和Keras平台,对高光谱数据进行处理,建立了深度神经网络的定量检测模型。并利用遗传算法(GA)选择与猪肉新鲜度相关的特征光谱波段。结果表明,遗传算法选取波段对光谱模型的性能有明显提升。当光谱波段数达到35和50时,GA+ANN模型预测精度高于全波段的线性回归模型。TVC为预测指标的预测性能优于TVB-N,TVC测试集最佳R_(p)^(2)为0.877,RMSEP为0.575;预测TVB-N的最佳R_(p)^(2)为0.826,RMSEP为1.01。此外,通过研究还发现,遗传算法优选的近红外光谱波段与肉品的O-H,N-H,C=O等分子振动吸收带有较高的吻合度。本研究为处理近红外和高光谱数据提供了新的方法,也为猪肉及其他肉品新鲜度快速无损检测提供了技术参考。To evaluate the effectiveness of a deep learning which is based intelligent assisted hyperspectral imaging system on the detection of pork freshness indicators,volatile basic nitrogen(TVB-N),total viable count(TVC),and 900~2500 nm near-infrared spectral data were collected from pork which were refrigerated at 4℃for 12 days.Based on Python's TensorFlow and Keras platform,hyperspectral data was processed and a quantitative detection model of deep neural network was also established.And the characteristic spectral bands related to pork freshness were selected by genetic algorithm(GA).The results showed that the performance of the spectral model could be improved significantly by selecting the band of genetic algorithm.When the number of spectral bands reached 35 and 50,the prediction accuracy of GA+ANN model was higher than that of full-band linear regression model.The predictive performance of TVC was better than that of TVB-N,and the best R_(p)^(2)and RMSEP of TVC were 0.877 and 0.575,respectively.The best R_(p)^(2)and RMSEP for TVB-N were 0.826 and 1.01,respectively.In addition,it was also found that the NIR band selected by genetic algorithm had a high coincidence with the molecular vibration absorption bands of meat,such as O-H,N-H,C=O and so on.This study provides a new method which can be used for processing the near-infrared and hyperspectral data,and also provides a technical reference for rapid nondestructive testing of pork and other meat freshness.

关 键 词:猪肉品质 新鲜度 高光谱成像(HSI) 近红外光谱(NIR) TensorFlow 遗传算法 神经网络 

分 类 号:TS251.7[轻工技术与工程—农产品加工及贮藏工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象