基于光学图像分类的船舶航迹自抗扰检测技术  

Ship trajectory self disturbance rejection detection technology based on optical image classification

在线阅读下载全文

作  者:孙宝刚 王家伟[1] SUN Baogang;WANG Jiawei(School of information Science and Engineerin Chongqing Jiaotong University,Chongqing 400074,China;School of Science and Technology Chongqing College of Humanities,Chongqing 401524,China)

机构地区:[1]重庆交通大学信息科学与工程学院,重庆400074 [2]重庆人文科技学院计算机工程学院,重庆401524

出  处:《舰船科学技术》2024年第15期164-168,共5页Ship Science and Technology

基  金:重庆市教委基金项目(22SKGH493)。

摘  要:船舶航行过程中,受到风、浪、流等自然因素,以及船舶自身运动特性等因素的影响,导致船舶偏离预定航迹,影响航行的安全性和稳定性,为了有效控制船舶航迹,保证船舶的运行安全,提出一种基于光学图像分类的船舶航迹自抗扰检测技术。使用卷积神经网络提取光学图像中的船舶特征,并把船舶导航目标的光学图像划分成大、小导航目标切片,并基于大导航目标特征构建第一层SVM分类器训练漏检大、小导航目标数据集,形成第二、三层SVM分类器。利用该分类器对挖掘到特征参数进行逐层的剔除筛选,检测漏检大、小导航目标,最终对船舶航迹中的光学图像数据进行识别和分类;在此基础上,利用自抗扰技术结合高斯核映射,捕捉船舶航迹的复杂变化,实现船舶航迹自抗扰检测。实验结果表明,应用该方法能有效区分目标光学图像,并可以在干扰下较稳定的完成船舶航迹检测,从而确保船舶航行的安全和稳定。During the navigation process of ships,natural factors such as wind,waves,and currents,as well as the movement characteristics of the ship itself,can cause the ship to deviate from the predetermined trajectory,affecting the safety and stability of navigation.In order to effectively control the ship's trajectory and ensure the safe operation of the ship,a ship's trajectory self disturbance detection technology based on optical image classification is proposed.Using convolutional neural networks to extract ship features from optical images,and dividing the optical images of ship navigation targets into large and small navigation target slices,the first layer SVM classifier is constructed based on the large navigation target features to train missed large and small navigation target datasets,forming the second and third layers of SVM classifiers.Using this classifier to remove and filter the mined feature parameters layer by layer,detecting missed large and small navigation targets,and ultimately identifying and classifying optical image data in ship trajectories;On this basis,using self disturbance rejection technology combined with Gaussian kernel mapping,complex changes in ship trajectories are captured to achieve self disturbance rejection detection of ship trajectories.The experimental results show that the method can effectively distinguish the target optical image,and can complete the ship track detection under interference,so as to ensure the safety and stability of ship navigation.

关 键 词:船舶航迹 光学图像 自抗扰检测 深度学习 SVM分类器 卷积神经网络 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象