基于多传感器融合的模糊PID采煤机截割路径自适应控制方法  

Adaptive Control Method for Cutting Path of Fuzzy PID Coal Mining Machine Based on Multi-Sensor Fusion

在线阅读下载全文

作  者:李勇[1] LI Yong(Sanyi Heavy Equipment Co.,Ltd.,Shenyang,Liaoning 110027,China)

机构地区:[1]三一重型装备有限公司,辽宁沈阳110027

出  处:《自动化应用》2024年第15期86-88,共3页Automation Application

摘  要:截割路径自适应控制是提高采煤机生产效率和质量的重要手段,但现行方法控制精度较低,在实际中,截割路径RMSE、MAE均比较高。针对现行方法存在的不足和缺陷,提出基于多传感器融合的模糊PID采煤机截割路径自适应控制方法。采用多传感器融合技术感知采煤机截割运动学模型中位置及状态信息,并对多传感器数据融合处理,根据采煤机截割运动学规律得到采煤机截割路径,模糊化截割路径偏差,利用PID控制器调控比例、积分、微分3个参数,修正采煤机截割路径偏差,实现基于多传感器融合的模糊PID采煤机截割路径自适应控制。实验证明,设计方法应用下的采煤机截割路径RMSE和MAE得到了明显降低,为采煤机截割路径自适应控制提供了一定参考。Adaptive control of cutting path is an important means to improve the production efficiency and quality of coal mining machines.However,the current method has low control accuracy.In practice,the RMSE and MAE of cutting path are relatively high.Aiming at the shortcomings and deficiencies of current methods,a fuzzy PID cutting path adaptive control method for coal mining machines based on multi-sensor fusion is proposed.Adopting multi-sensor fusion technology to perceive the position and status information in the cutting kinematic model of the coal mining machine,and fusing and processing the multi-sensor data,the cutting path of the coal mining machine is obtained based on the cutting kinematic laws of the coal mining machine.The cutting path deviation is fuzzified,and the PID controller is used to regulate the ratio,integral,and derivative parameters to correct the cutting path deviation of the coal mining machine,achieving adaptive control of the cutting path of the coal mining machine based on multi-sensor fusion using fuzzy PID.Experimental results have shown that the RMSE and MAE of the cutting path of the coal mining machine under the application of the design method have been significantly reduced,providing a certain reference for the adaptive control of the cutting path of the coal mining machine.

关 键 词:多传感器融合 模糊 PID 采煤机 截割路径 自适应控制 角速度 

分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象