检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王中森 李茂青[1] 岳丽丽[1] 王耀东 高云波[1] WANG Zhongsen;LI Maoqing;YUE Lili;WANG Yaodong;GAO Yunbo(School of Automatic&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070
出 处:《铁道科学与工程学报》2024年第8期3050-3060,共11页Journal of Railway Science and Engineering
基 金:国家自然科学基金资助项目(52162050)。
摘 要:列车执行器未知故障引起的动力部分损失、列车模型参数不确定和未知外界干扰可能会造成停车精度降低进而影响运行效率,为解决上述问题影响下的动车组速度跟踪和精准停车问题,考虑设计一种输入饱和的自适应控制方案。首先,考虑列车的非线性,建立执行器复合故障下的多质点列车动力学模型,使用存在有界逼近误差的光滑非线性函数来逼近饱和函数,并根据中值定理将非仿射系统转换为仿射系统。其次,基于动车组故障模型,结合自适应模糊逻辑系统和反步法设计一种不需要执行器故障信息的自适应模糊容错控制器,利用自适应模糊逻辑系统逼近系统中未知外部干扰、模型不确定项等系统函数,并通过使用范数估计方法使得每个模糊逻辑系统只需要一个自适应参数,降低系统自适应更新律的复杂度。然后,根据李雅普诺夫稳定性定理证明闭环系统所有信号均有界,并且通过选取适当的控制器参数可保证跟踪误差收敛到原点附近任意小的邻域内。最后,选取CRH5型动车组作为控制对象进行仿真试验。仿真数据显示:控制器可以确保动车组平稳运行,同时使得最终停车误差在±0.5 cm以内,并且控制输入始终在受限范围内。仿真结果说明所设计的控制器可以在执行器复合故障和输入饱和同时存在的情况下完成预期控制目标并有效抑制外界干扰与模型不确定的影响。The partial power loss caused by unknown faults in train actuators,model uncertainties and unknown external disturbances may reduce stopping accuracy,consequently impacting operational efficiency.To address the issues of accurate stopping and velocity tracking control problem under the aforementioned conditions,a saturated adaptive control method was proposed for Electric Multiple Unit(EMU).First,considering the nonlinearity of the train,the multi-mass train dynamics models with unknown actuator failures was established.A smooth function with a bounded approximation error was used to approximate the saturation function and converted the non-affine system into an affine system based on the mean-value theorem.Second,combining adaptive fuzzy logic system and back-stepping method,an adaptive fuzzy fault-tolerant controller that does not need actuator fault information was designed based on the fault model.The adaptive fuzzy logic systems are used to approximate unknown external disturbances,model uncertainties,and other system functions.By using the norm estimation method,each fuzzy logic system only needs one adaptive parameter,reducing the complexity of the system adaptive update law.Then,it was proven via the Lyapunov’s stability theory that all the signals in the closed-loop system are bounded.By selecting appropriate controller parameters,the tracking error was converged to any small neighborhood near the origin.Final,the CRH5 EMU was selected as the control object for simulation.Simulation data shows that the controller can ensure the smooth operation of the EMU,while keeping the stopping error within±0.5 cm,and the control input is always within the restricted range.The simulation results demonstrate that the designed approach can achieve the control objective and suppress the influence of external interference and model uncertainties in the presence of actuator faults and input saturation.
关 键 词:动车组 多质点模型 精准停车 输入饱和 容错控制 自适应模糊控制
分 类 号:U284.3[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117