基于卡尔曼滤波的信号采集和PID半主动悬架控制  被引量:1

Signal Acquisition and PID Semi-active Suspension Control Based on Kalman filter

在线阅读下载全文

作  者:徐泽 董培阳 XU Ze;DONG Pei-yang(School of Automotive Engineering,Shandong Jiaotong University,Jinan 250357,China)

机构地区:[1]山东交通学院汽车工程学院,山东济南250357

出  处:《山东工业技术》2024年第3期89-96,共8页Journal of Shandong Industrial Technology

摘  要:为提高汽车半主动悬架信号的采集精度和对半主动悬架的控制效果,提高车辆的舒适性和平顺性。本文利用Matlab/Simulink进行仿真,通过建立两自由度被动悬架模型和路面激励模型,利用卡尔曼滤波(KF)对采集的车辆加速度信号进行去噪处理,对比真实值与滤波估计值,验证了卡尔曼滤波的滤波效果;建立两自由度半主动悬架模型,将经过卡尔曼滤波的信号输入比例-积分-微分控制器(PID)中,输出对半主动悬架的控制力,分析半主动悬架性能参数的变化情况。仿真结果表明,卡尔曼滤波能有效减小噪声对采集信号的影响;采用卡尔曼滤波和PID控制的半主动悬架的性能参数有不同程度的改善,使得PID对半主动悬架的控制效果更好,增加汽车的舒适性。In order to improve the acquisition accuracy of semi-active suspension signal and the control effect of semi-active suspension,the comfort and ride comfort of vehicle are improved.In this paper,Matlab\Simulink is used to simulate,through the construction of two-degree-of-freedom passive suspension model and road excitation model,Kalman filter(KF)is used to denoise the collected vehicle acceleration signal,and the filtering effect of Kalman filter is verified by comparing the real value with the filtering estimate.A two-degree-of-freedom semiactive suspension model was established,and the Kalman filtered signal was input into the proportional integraldifferential controller(PID)to output the control force of the semi-active suspension,and the variation of the performance parameters of the semi-active suspension was analyzed.The simulation results show that Kalman filter can effectively reduce the influence of noise on the acquired signal.The performance parameters of the semi-active suspension with Kalman filter and PID control are improved in different degrees,which makes the PID control effect on the semi-active suspension better and increases the comfort of the vehicle.

关 键 词:卡尔曼滤波 PID 半主动悬架 

分 类 号:U463[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象