基于双目视觉的列车轮对表面缺陷及型面参数检测方法  被引量:2

Inspection method for surface defect and shape parameter of train wheelset based on binocular vision

在线阅读下载全文

作  者:胡成放 丁昊昊[2] 陈德君 张岩 刘启跃[2] 王文健[2] 郭俊[2] 林强[2,4] HU Chengfang;DING Haohao;CHEN Dejun;ZHANG Yan;LIU Qiyue;WANG Wenjian;GUO Jun;LIN Qiang(Tangshan Institute,Southwest Jiaotong University,Tangshan 063000,China;Tribology Research Institute,State Key Laboratory of Rail Transit Vehicle System,Southwest Jiaotong University,Chengdu 610031,China;Thangshan Baichuan Intelligent Machine Co.,Ltd.,Tangshan 063000,China;Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology&Equipment of Zhejiang Province,Zhejiang Normal University,Jinhua 321004,China)

机构地区:[1]西南交通大学唐山研究院,河北唐山063000 [2]西南交通大学轨道交通运载系统全国重点实验室摩擦学研究所,四川成都610031 [3]唐山百川智能机器股份有限公司,河北唐山063000 [4]浙江师范大学浙江省城市轨道交通智能运维技术与装备重点实验室,浙江金华321004

出  处:《中国测试》2024年第8期101-108,共8页China Measurement & Test

基  金:国家自然科学基金(52205578);中国博士后科学基金面上项目(2021M702711);中央高校基本科研业务费专项资金(2682022CX009);浙江省城市轨道交通智能运维技术与装备重点实验室开放课题基金(ZSDRTKF2021003)。

摘  要:列车轮对表面缺陷及磨耗后的车轮轮型参数对列车安全行驶具有重要影响。搭建一种基于结构光与双目立体视觉相结合的非接触式列车轮对型面检测系统,设计针对车轮滚动圆直径、轮缘高度、轮缘厚度以及车轮擦伤的双目视觉无损检测方法。首先基于迭代最近点(iterative closest point,ICP)算法将各相机采集的车轮型面数据拼接为整体车轮点云三维模型;然后,从该三维模型中提取出滚动圆与轮缘顶点圆,基于最小二乘拟合法分别计算滚动圆直径、轮缘高度、轮缘厚度参数;最后,基于模式匹配方法检测车轮型面是否出现擦伤缺陷,并计算得到擦伤深度。检测结果表明:该列车轮对型面检测系统及表征方法对于滚动圆直径检测误差为0.22 mm,对于轮缘高度与轮缘厚度检测误差分别为–0.08 mm及0.07 mm,最大擦伤深度检测误差为0.18 mm。研究成果可有效检测列车车轮型面参数及擦伤缺陷,具有较强的工程应用价值。The surface defects of train wheelset and the shape parameters of worn wheels have an important impact on the safe operation of trains.A non-contact train wheelset shape detection system based on the combination of structured light and binocular stereo vision is built,and a binocular vision nondestructive inspection method is designed for wheel rolling circle diameter,flange height,flange thickness and wheel flats.Firstly,the wheel profile data collected by each camera were spliced into a 3D model of the whole wheel point cloud based on the iterative closest point(ICP)algorithm.Then the rolling circle and flange vertex circle were extracted from the 3D model,and the rolling circle diameter,flange height and flange thickness parameters were calculated respectively based on the least square fitting method.Finally,the method based on pattern matching was used to detect whether the wheel profile has flat defects,and the flat depth was calculated.The detection results of the detection system and characterization method of the train wheelset shape show that the measuring errors of rolling circle diameter,flange height,flange thickness and the maximum flat depth are 0.22,–0.08,0.07 and 0.18 mm,respectively.The research result can effectively detect the wheel profile parameters and wheel flats,and has high engineering application value.

关 键 词:双目立体视觉 迭代最近点 型面参数 车轮擦伤 模式匹配 

分 类 号:TB9[一般工业技术—计量学] TP23[机械工程—测试计量技术及仪器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象