检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周鑫炎 王小利[1] ZHOU Xin-yan;WANG Xiao-li(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出 处:《数学杂志》2024年第5期460-470,共11页Journal of Mathematics
摘 要:本文研究了一类在Neumann边界条件下带有记忆时滞的捕食者-食饵模型稳定性以及分支的相关问题.利用强极大值原理和抛物方程的比较原理得到了模型的适定性(存在性、唯一性和正性),然后分析了系统中常数稳态解的稳定性;同时以基于记忆的扩散系数为分支参数,得到了系统的Turing分支和Hopf分支;说明了在该系统中对于任意的记忆时滞,总会存在大于临界值的记忆扩散系数,使得正常数稳态解是不稳定的;最后利用数值模拟验证相应结论.In this paper,we study the stability and bifurcation issues of a predator-prey model with memory delay under Neumann boundary conditions.The strong maximum principle and the comparison principle of parabolic equations are used to obtain the well-posedness of the model(existence,uniqueness and positivity),and then the stability of the constant steady-state solution in the system is analyzed.At the same time,the Turing bifurcation and Hopf bifurcation of the system are obtained by taking the memory-based di usion coecient as the bifurcation parameter;it is shown that for any memory delay in this system,there will always be a memory di usion coecient greater than the critical value,making the positive constant steady-state solution unstable.Finally,the numerical simulation is used to verify the corresponding conclusion.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.192.125