一类输出受限机械系统的鲁棒自适应容错跟踪  

Robust Adaptive Fault-Tolerant Tracking for a Class of Mechanical Systems with Output Constraints

在线阅读下载全文

作  者:任世纪 孙宗耀[1] 赵军圣[2] REN Shiji;SUN Zongyao;ZHAO Junsheng(Institute of Automation,Qufu Normal University,Qufu 273165,China;School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China)

机构地区:[1]曲阜师范大学自动化研究所,山东曲阜273165 [2]聊城大学数学科学学院,山东聊城252059

出  处:《聊城大学学报(自然科学版)》2024年第5期8-17,共10页Journal of Liaocheng University:Natural Science Edition

基  金:国家自然科学基金项目(62173208);山东省泰山学者项目(tsqn202103061)资助。

摘  要:研究了一类输出受限机械系统的鲁棒自适应容错跟踪控制问题。借助动态面控制(DSC)技术和时变尺度函数,设计了一个基于神经网络的状态反馈控制器,确保系统在遭受非匹配扰动和非仿射非线性执行器故障的情况下,输出信号满足预设的时变约束,并且跟踪误差在预设的时刻之前进入原点的任意预设的小邻域,同时也解决了传统反步法中虚拟控制器需要被多次求导的问题。本文的创新点在于放宽了对时变约束函数的要求,并且在时变因素存在的情况下阐明了神经网络逼近的紧集和闭环信号的有界性之间的逻辑关系。最后通过仿真验证了控制策略的有效性。This paper investigates the issue of robust adaptive fault-tolerant tracking control for a class of mechanical systems with output constraints.With the aid of the dynamic surface control(DSC)technology and scaling time-varying functions,a state feedback controller based on neural networks is presented.In the presence of unmatched disturbances and non-affine nonlinear actuator faults,the controller ensures that the system satisfies the predetermined time-varying output constraints and the tracking error enters any predetermined small neighborhood of the origin before the predetermined time,while solving the problem that virtual controllers need to be differentiated many times in traditional backstepping methods.The innovation lies in relaxing the requirement for the time-varying constraint functions and clarifying the logical relationship between the compactness of neural networks approximation and the boundedness of closed-loop signals in the presence of time-varying factors.Finally,the simulation is provided to demonstrate the efficiency of the proposed method.

关 键 词:鲁棒自适应 执行器故障 输出约束 神经网络 

分 类 号:O231[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象