检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李春青[1] 黄勇萍[1] 刘娟[2] LI Chunqing;HUANG Yongping;LIU Juan(College of Mathematics,Physics and Electronic Information Engineering,Guangxi Minzu Normal University,Chongzuo 532200,China;Unit 63892 of PLA,Luoyang 471003,China)
机构地区:[1]广西民族师范学院数理与电子信息工程学院,广西崇左532200 [2]中国人民解放军63892部队,河南洛阳471003
出 处:《传感器与微系统》2024年第10期132-136,共5页Transducer and Microsystem Technologies
基 金:2022年度广西高校中青年教师科研基础能力提升项目(2022KY0767)。
摘 要:为了解决经典蚁群优化算法应用于移动机器人路径规划中存在综合寻优能力差、收敛速度慢和复杂环境中算法鲁棒性不强等问题,提出了一种基于位置和能耗启发的改进蚁群优化算法。综合考虑机器人行进路径长度、行进路径坡度和转弯带来的能耗问题,提出综合能耗启发因子;考虑路径起点与终点之间,直线距离最短,提出到起止点直线距离启发因子,引导蚂蚁往起止点直线附近路径靠近;提出到终点距离启发因子,引导蚂蚁往目标点方向行进。设计了综合三种启发因子的启发函数,优化状态转移计算方式。此外,通过引入动态信息素挥发因子、改进信息素增量、设计信息素限制等优化信息素更新策略。多种环境多次仿真实验结果对比分析表明,改进算法在寻优路径长度、路径高度均方差、综合性能等方面具有更加优秀的表现。In order to solve the problems of poor comprehensive optimization ability,slow convergence speed,and weak algorithm robustness in the application of classic ant colony algorithm in mobile robot path planning,a modified ant colony optimization algorithm based on location and energy consumption heuristic is proposed.Considering the robot’s travel path length,travel path slope,and energy consumption caused by turning,a comprehensive energy consumption heuristic factor is proposed.Considering that between the starting point and the end point of path,straight-line distance is the shortest a straight-line distance heuristic factor is proposed to guide the ants to approach the path around the straight from starting point to the end point.A distance heuristic factor to the end point is proposed to guide the ants to move towards the target point.A heuristic function combining three heuristic factors is designed to optimize mode of the state transition calculation.In addition,by introducing dynamic pheromone evaporation factor,improving pheromone increment,and designing pheromone constraints,the pheromone update strategy is optimized.Comparative analysis of multiple simulated experiments in various environments shows that the improved algorithm has more excellent show in optimizing path length,path height variance,and comprehensive performance.
关 键 词:蚁群优化算法 路径规划 能耗启发因子 移动机器人
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229