检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王三泉 王璐[1] 储珺[1] 黄斌 WANG San-quan;WANG Lu;CHU Jun;HUANG Bin(School of Software Engineering,Nanchang Hangkong University,Nanchang 330063,China)
出 处:《南昌航空大学学报(自然科学版)》2024年第3期33-44,71,共13页Journal of Nanchang Hangkong University(Natural Sciences)
基 金:国家自然科学基金(62162045)。
摘 要:开放世界目标识别中未知类别样本难以获取,这些样本无法有效参与训练,针对这个问题,提出基于未知类别少样本学习的开放世界目标定位方法。首先,利用伪标签生成模型,将背景区域中高目标性得分的目标区域标记为伪标签,为模型学习未知类提供少量样本,增强模型对未知类别的泛化能力;其次,设计两个分支共同学习目标特征,其一为目标性分支,其二为定位质量分支。前者专注于确定目标框内是否存在目标,后者则集中于评估目标框的质量,从目标存在性和目标定位质量两个维度提取和理解目标特征。同时,目标性分支联合训练真实标签与伪标签样本增强对未知类别的识别能力,定位质量分支通过学习高质量的真实标签样本并排除伪标签样本,以减少噪声干扰。最后在COCO数据集上对该方法进行有效性评估,结果显示,与其他方法相比,所提方法具有较为出色的检测性能。Unknown category samples are difficult to obtain in open world object recognition,and these samples cannot effectively participate in training.To address this issue,this study proposes an open-world object localization method based on few-shot learning for unknown categories.Initially,a pseudo-label generation model is employed to label regions with high objectness scores within background areas as pseudo-labels,providing a small number of samples for the model to learn unknown classes and enhancing its generalization ability towards unseen categories.Subsequently,two branches are designed to jointly learn object features:one focuses on determining the presence of an object within the bounding box(objectness branch),while the other concentrates on assessing the quality of the bounding box(localization quality branch).These branches extract and comprehend object features from two dimensions,i.e.object existence and localization quality.The objectness branch is trained jointly with both real and pseudo-label samples to enhance recognition of unknown categories,whereas the localization quality branch learns from high-quality real labels and discards pseudo-labels to minimize noise interference.An effective evaluation of this method on the COCO dataset demonstrates that it has excellent detection performance compared to other methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222