植物病害智能识别APP开发及实践教学应用  

Development and Application of Intelligent Identification APP for Plant Disease in the Practical Teaching

在线阅读下载全文

作  者:孔令广[1] 李小芹[2] 李洋[1] 路冲冲 姜咏芳[1] 张超[3] 丁新华[1] KONG Lingguang;LI Xiaoqin;LI Yang;LU Chongchong;JIANG Yongfang;ZHANG Chao;DING Xinhua(College of Plant Protection,Shandong Agricultural University,Tai'an 271018,China;Library,Shandong Agricultural University,Tai'an 271018,China;Department of Information Science and Engineering,Shandong Agricultural University,Tai'an 271018,China)

机构地区:[1]山东农业大学植物保护学院,泰安271018 [2]山东农业大学图书馆,泰安271018 [3]山东农业大学信息科学与工程学院,泰安271018

出  处:《实验科学与技术》2024年第5期53-57,共5页Experiment Science and Technology

基  金:山东省本科教学改革研究面上项目(M2020316);全国农业教指委2021年面上项目(2021-NYYB-37);山东农业大学教学改革研究重点项目(XZ202103)。

摘  要:该文分析了传统植物病理实践教学存在的一些问题和弊端,利用卷积神经网络技术开发了植物病害症状和病原菌智能识别APP,并将之应用于实践教学,促进了学科交叉融合,丰富了教学内容,完善了实践教学评价体系。实践表明,植物病害智能识别APP在实践教学中效果显著,提高了学生的学习兴趣,便于学生个性化、精准化、自由化学习,有利于培养学生跨学科的创新思维和应用能力,为新农科复合型人才的培养提供了一种便利工具。The challenges and limitations associated with traditional methods of the teaching plant pathology are addressed,and an AI-based mobile application(APP)that utilizes the convolutional neural network(CNN)technology for the visualization of plant disease symptoms and pathogens is developed,which is applied to practical teaching scenarios.The APP can be applied to the innovative practical teaching,which enhances the practical teaching effectiveness.Compared with the traditional teaching methods,this AI-based APP demonstrates a notable positive impact on learning efficacy,significantly increases students’interest in self-directed learning,fosters interdisciplinary innovative thinking,and enhances their application abilities.This tool is particularly beneficial for young talent with diverse skill sets.Furthermore,the APP can be used to improve the quality of education,modernize teaching methodologies,promote interdisciplinary integration,and enhance the evaluation system of practical teaching.

关 键 词:植物病害 智能识别 APP 实践教学 人才培养 

分 类 号:G642[文化科学—高等教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象