检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:笪晨 宋天麟[1] 王勇刚[1] 卢亚平[1] DA Chen;SONG Tian-lin;WANG Yong-gang;LU Ya-ping
机构地区:[1]苏州大学应用技术学院工学院,江苏苏州215300
出 处:《制造业自动化》2024年第10期62-68,共7页Manufacturing Automation
基 金:江苏省高等学校自然科学研究面上项目(21KJB460020)。
摘 要:为了减少无人驾驶的计算时间与硬件资源的消耗,研究了路径规划与轨迹跟踪之间的关系,改进了快速扩展随机搜索树(RRT)与线性时变模型预测控制算法(LTV-MPC),基于运动学约束设计了一种规划与跟踪的控制算法。首先利用人工势场法(APF)根据车辆、障碍物、初始点和终点之间的关系划分地图,同时生成引导域;然后联合车辆模型和地图信息设置采样点、生长步长,并对路径进行航迹优化得到最优的路径。针对路径进行速度标注,设计目标函数并添加条件约束、设置动态采样时间以改进LTV-MPC算法来跟踪轨迹。经仿真测试,在车辆平稳行驶的条件下,改进RRT算法较Dijkstra算法减少39.7%的规划时间,同时自适应MPC算法减少了27.2%的跟踪时间。
关 键 词:路径规划 轨迹跟踪 线性时变模型预测控制 运动学
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.234.109