检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宇珊 庞林江[1] 金建德 盛林霞 孟祥河[3] 王俊[4] 路兴花[1] WANG Yushan;PANG Linjiang;JIN Jiande;SHENG Linxia;MENG Xianghe;WANG Jun;LU Xinghua(College of Food and Health,Zhejiang A&F University,Hangzhou Zhejiang 311300,China;Direct Affiliated Grain and Oil Reserve Depot of Zhejiang Provincial Food Strategic Reserves Bureau,Hangzhou Zhejiang 311112,China;College of Food Science and Engineering,Zhejiang University of Technology,Hangzhou Zhejiang 310014,China;School of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou Zhejiang 310058,China)
机构地区:[1]浙江农林大学食品与健康学院,浙江杭州311300 [2]浙江省粮食和物资储备局直属粮油储备库,浙江杭州311112 [3]浙江工业大学食品科学与工程学院,浙江杭州310014 [4]浙江大学生物系统工程与食品科学学院,浙江杭州310058
出 处:《传感技术学报》2024年第10期1834-1840,共7页Chinese Journal of Sensors and Actuators
基 金:浙江省重点研发计划项目(2020C02018)。
摘 要:针对菜籽和大豆毛油储藏期间油罐上、中、下层毛油氧化情况的差异问题,提出一种电子鼻技术结合化学计量学对毛油氧化情况进行判别的方法,为改善毛油储藏措施提供技术参考。基于常规理化分析,通过电子鼻结合偏最小二乘判别(PLS-DA)、支持向量机(SVM)、BP神经网络(BPNN)、人工神经网络(ANN)对特征样本进行特征筛选和分类识别。结果表明,上、中、下层毛油的理化差异不显著,且中、下层呈现高度相似性,上层劣变稍快。PLS-DA和BPNN模型在大豆和菜籽毛油上层和中下层混样氧化程度的分类识别上效果不佳,而优化后的SVM和ANN模型测试集准确率分别达到了96.7%和98.3%。因此,电子鼻结合ANN或SVM可以有效识别上层和中下层的大豆和菜籽毛油。Because of the difference in the oxidation of the upper,middle,and lower layers of the oil tank of rapeseed and soybean crude oil during storage,an electronic nose technology combined with stoichiometry is proposed to distinguish the oxidation of crude oil,which could provide technical reference for improving the storage measures.The feature samples are screened and classified,through electronic nose combined with partial least squares discrimination(PLS-DA),support vector machine(SVM),BP neural network(BPNN),and ar tificial neural network(ANN),based on conventional physical and chemical analysis.The results show that the physical and chemical differences of the upper,middle,lower oils are not significant,and the middle and lower layers are highly similar,and the upper layer deteriorats slightly faster.The PLS-DA and BPNN model are not effective in classifying and identifying the oxidation degree of the upper and middle-lower mixed samples of soybean and rapeseed oil,but the accuracy of optimized model test set with SVM and ANN achieves 96.7%and 98.3%,respectively.Therefore,the electronic nose combined with ANN or SVM can effectively identify the upper and mid dle-lower layers of soybean and rapeseed crude oils.
分 类 号:TS225.1[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147