周车轨迹预测不确定性智能车避撞策略研究  

Research on intelligent vehicle collision avoidance strategy based on uncertainty of surrounding vehicle trajectory prediction

在线阅读下载全文

作  者:陈龙[1] 王歆叶 熊晓夏 蔡英凤[1] 刘擎超[1] 王海[2] CHEN Long;WANG Xinye;XIONG Xiaoxia;CAI Yingfeng;LIU Qingchao;WANG Hai(Institute of Automotive Engineering,Jiangsu University,Zhenjiang 212013,China;School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学汽车工程研究院,江苏镇江212013 [2]江苏大学汽车与交通工程学院,江苏镇江212013

出  处:《重庆理工大学学报(自然科学)》2024年第10期1-12,共12页Journal of Chongqing University of Technology:Natural Science

基  金:国家自然科学基金项目(52002154,52372413,52225212,U20A20331);国家重点研发项目(2023YFB2504403)。

摘  要:提出了一种基于周车轨迹预测不确定性的智能汽车避撞策略研究方法。轨迹预测模块,将基于物理的轨迹预测模型和数据驱动模型相结合构建物理引导的轨迹预测模型(PG-LSTM),模型输出关于周车预测轨迹的二维高斯分布参数,以表征驾驶员行为的不确定性;风险评估及避撞策略模块,结合轨迹预测模型的输出结果,提出一个新的风险度量--预测驾驶风险PDR和预测相对驾驶风险指数PRDRI作为评估未来风险的参考指标,建立紧急工况下避撞决策机制。通过Carsim搭建复杂紧急工况场景进行仿真实验。仿真结果表明:所提出的驾驶风险评估模型可以准确地辨识复杂行车场景未来驾驶风险,同时基于驾驶风险所提出的避撞决策机制能够提升智能汽车的避撞安全性。This paper proposes a research method for an intelligent vehicle collision avoidance strategy based on the uncertainty of trajectory prediction of surrounding vehicles.The trajectory prediction module combines physics-based trajectory prediction models with data-driven models to construct a physics-guided trajectory prediction model(PG-LSTM).The model outputs parameters of a two-dimensional Gaussian distribution for the predicted trajectories of surrounding vehicles to represent the uncertainty of drivers’behaviors.The risk assessment and collision avoidance strategy module,leveraging the output of the trajectory prediction model,introduces a new risk metric-Predictive Driving Risk(PDR)and Predictive Relative Driving Risk Index(PRDRI)as reference indicators for assessing future risks,establishing a collision avoidance decision-making mechanism for emergent situations.Complex emergency scenarios are simulated using Carsim.Our results indicate the proposed driving risk assessment model accurately identifies future driving risks in complex driving scenarios.Moreover,the collision avoidance decision mechanism based on driving risk enhances the collision avoidance safety of intelligent vehicles.

关 键 词:智能汽车 驾驶风险 轨迹预测 避撞策略 

分 类 号:U461.91[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象