检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢心缘 赵华民 任锐 苏萌 苏立阳 张淑娟[1] LU Xinyuan;ZHAO Huamin;REN Rui;SU Meng;SU Liyang;ZHANG Shujuan(College of Agricultural Engineering/Machinery Key Technology and Equipment Key Laboratory of Shanxi Province,Shanxi Agricultural University,Taigu 030801,China)
机构地区:[1]山西农业大学农业工程学院/旱作农业机械关键技术与装备山西省重点实验室,山西太谷030801
出 处:《南京农业大学学报》2024年第6期1241-1250,共10页Journal of Nanjing Agricultural University
基 金:山西省研究生实践创新项目(2023SJ100);山西省自然科学基金青年项目(202103021223145)。
摘 要:[目的]针对目前农业机器人在非结构化枣园中传统机器视觉算法难以处理光影变化、夜间难以识别等问题导致的导航道路分割不准确,实时性及复杂模型难以部署等问题,本研究提出基于YOLOv5s-seg改进网络模型视觉导航路径识别方法——YOLOv5s-orchard模型。[方法]模型采用FasterNet代替YOLOv5s-seg的原有主干网络,减少了模型的参数量和内存占用量;在特征提取层及neck部分引入SE注意力机制,提高了模型的特征提取能力;将C3替换成C3Ghost轻量级网络以进一步减少模型的参数量和内存占用量。[结果]改进后的网络mAP达到91.59%,FLOP下降到11.30 G,模型大小为2.91 MB。对分割后的图像采用最小二乘法拟合道路离散点提取导航线,算法平均距离偏差为1.99 cm,平均距离误差比例为0.68%。[结论]YOLOv5s-orchard网络具有较高的精度,导航线提取误差较小,能够满足枣园道路分割的需求。[Objectives]In view of the current agricultural robots in the unstructured jujube garden,the traditional machine vision algorithm has difficulty dealing with light and shadow changes,has difficulty identifying objects at night,leading to inaccurate navigation road segmentation,real-time and has difficulty deploying complex models.In this study,we proposed a modified network model visual navigation path recognition method based on YOLOv5s-seg-YOLOv5s-orchard model.[Methods]The model used FasterNet instead of the original backbone network of YOLOv5s-seg,which reduced the number of parameters and memory usage of the model;introduced the SE attention mechanism in the feature extraction layer and neck part to improve the feature extraction ability of the model;replaced C3 with C3Ghost lightweight network to further reduce the number of parameters and memory usage of the model.[Results]The results showed that the improved network mAP reached 91.59%,FLOP decreased to 11.30 G and a model size of 2.91 MB.The navigation lines were fitted by least squares to the segmented images.The mean distance deviation of the algorithm was 1.99 cm,and the mean distance error ratio was 0.68%.[Conclusions]The results indicated that the YOLOv5s-orchard network had high accuracy.The navigation line extraction error was relatively small.The YOLOv5s-orchard could meet the needs of jujube orchard road segmentation.
关 键 词:农业机器人 枣园 视觉导航 图像分割 导航路径识别 YOLOv5s-orchard
分 类 号:S126[农业科学—农业基础科学] S665.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222