检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖金壮[1] 郭辉辉 王宁 XIAO Jinzhuang;GUO Huihui;WANG Ning(College of Electronic and Information Engineering,Hebei University,Baoding 071000,China)
机构地区:[1]河北大学电子信息工程学院,河北保定071000
出 处:《计算机集成制造系统》2024年第11期3977-3983,共7页Computer Integrated Manufacturing Systems
基 金:中央引导地方科技发展专项资助项目(19941822G);第49批教育部留学回国人员科研启动基金资助项目。
摘 要:针对毛巾表面小尺寸瑕疵和极端纵横比的经纬向瑕疵,提出基于卷积神经网络的毛巾瑕疵图像检测方法。首先采用所构建毛巾瑕疵检测系统中的面阵工业相机进行毛巾样本图像采集,从中选取150张带有瑕疵的图像,对采集的图像进行数据扩充,并制作数据集;其次,通过融合特征金字塔网络与ResNet-50,并引入K-means聚类优化边界框宽高比,得到适用的Faster R-CNN目标检测算法;最后,用数据集进行网络训练,提取图像中的瑕疵特征,识别瑕疵目标,并对训练所得网络进行实验验证,识别检出率达到95.2%。结果表明,所提出的系统可有效实现毛巾瑕疵自动检测。Aiming at the problems of small size defects and warp and weft defects with extreme aspect ratios on the surface of towels,an image detection method for towel defects based on Convolutional Neural Network(CNN)was proposed.An area-scan industrial camera in the constructed towel defect detection system was used to collect towel images,and 150 images with defects were selected.After that,a dataset was made after data augmentation of the collected images.By fusing the feature pyramid network with ResNet-50 and introducing K-means clustering to optimize the aspect ratio of bounding box,the applicable Faster R-CNN target detection algorithm was obtained.To extract the defect features in images and identify the defect targets,the data set was put into network for training,and the trained network was experimentally verified,the recognition detection rate reached 95.2%.Experimental results showed that the system could effectively realize automatic detection of towel defects.
关 键 词:卷积神经网络 毛巾瑕疵检测 Faster R-CNN 特征金字塔网络 K-MEANS聚类
分 类 号:TS103.63[轻工技术与工程—纺织工程] TP183[轻工技术与工程—纺织科学与工程] TP391.41[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15