多项Caputo分数阶微分方程Dirichlet问题Lyapunov型不等式  

Lyapunov-Type Inequalities for Dirichlet Problems of Multi-Term Caputo Fractional Differential Equations

在线阅读下载全文

作  者:张伟 陈柯元 毋祎 倪晋波 Zhang Wei;Chen Keyuan;Wu Yi;Ni Jinbo(School of Mathematics and Big Data,Anhui University of Science and Technology,Anhui Huainan 232001)

机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232001

出  处:《数学物理学报(A辑)》2024年第6期1433-1444,共12页Acta Mathematica Scientia

基  金:国家自然科学基金(11601007);安徽省自然科学基金资助(2208085-QA05);安徽理工大学大学生创新创业训练计划(202210361102)。

摘  要:该文探讨了一类含参数的多项分数阶微分方程在Dirichlet边值条件下的Lyapunov型不等式.首先将分数阶微分方程边值问题等价转化为带Green函数的积分方程,再证明出Green函数的相关性质,最后结合先验估计方法得出相应的Lyapunov型不等式.多项分数阶微分方程属于非局部方程类别,其复杂性超越了单项分数阶微分方程.研究多项分数阶微分方程边值问题的Lyapunov型不等式,对定性分析多项分数阶非线性微分方程边值问题具有重要意义.This paper investigates the Lyapunov-type inequalities for a class of multi-term fractional differential equations with with a parameter,subject to Dirichlet boundary conditions.We first transform the fractional boundary value problem into an integral equation with Green's functions,then prove the relevant properties of the Green's functions,and finally obtain the corresponding Lyapunov-type inequalities using a priori estimation method.Multi-term fractional differential equations belong to the category of non-local equations,and their complexity exceeds that of single-term fractional differential equations.Studying the Lyapunov-type inequalities for multi-term fractional boundary value problems is of significant importance for the qualitative analysis of boundary value problems of multi-term fractional nonlinear differential equations.

关 键 词:多项分数阶微分方程 DIRICHLET 问题 Green 函数 LYAPUNOV 型不等式 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象