基于拟共形理论的分数阶多尺度微分同胚图像配准  

Multi-Scale Approach for Diffeomorphic Image Registration with Fractional-Order Regularization Based on Quasiconformal Theory

在线阅读下载全文

作  者:王慧楠 韩欢 Wang Huinan;Han Huan(Department of Mathematics,Wuhan University of Technology,Wuhan 430070)

机构地区:[1]武汉理工大学数学系,武汉430070

出  处:《数学物理学报(A辑)》2024年第6期1665-1688,共24页Acta Mathematica Scientia

基  金:国家自然科学基金(11901443);湖北省自然科学基金(2022CFB379)。

摘  要:图像配准领域存在着两大挑战:(1)网格重叠现象;(2)贪婪配准问题不适定.针对这两大挑战,该文提出了一个基于拟共形理论的多尺度分数阶微分同胚图像配准模型,该模型在无网格重叠及先验正则项的前提下,得到了相似性度量泛函的一个光滑极小值点.此外,该文证明了所提模型解的存在性及多尺度方法的收敛性,并通过数值实验验证了所提算法能有效避免网格重叠并得到较好的配准结果.Two significant challenges relating to image registration include the issue of mesh folding and the unresolved problem of greedy registration.To tackle these challenges,a multi-scale approach for diffeomorphic image registration model with fractional-order regularization based on quasiconformal theory is proposed in this paper.It employs fractional-order differential to achieve a smooth energy functional minima without mesh folding and a priori regular terms.Furthermore,the existence of solution for the proposed model and the convergence of the multi-scale approach are proved.And numerical tests are performed to demonstrate that the proposed algorithm effectively eliminates mesh folding and generates superior registration results.

关 键 词:微分同胚 多尺度 拟共形理论 分数阶 图像配准 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象