检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨艳平 陈展衡 YANG Yanping;CHEN Zhanheng(School of Mathematics and Statistics,Yili Normal University,Yining 835000)
机构地区:[1]伊犁师范大学数学与统计学院,伊宁835000
出 处:《工程数学学报》2024年第6期1041-1052,共12页Chinese Journal of Engineering Mathematics
基 金:新疆维吾尔自治区自然科学基金(2024D01C196)。
摘 要:研究了具有变时滞的四元数值Cohen-Grossberg神经网络的全局µ稳定性。首先,将变时滞概念引入神经网络模型,从而构建了一个能更精确反映神经元动态特性的模型。接着,通过应用同胚映射定理,探讨了平衡点存在的唯一性,并确定了系统存在唯一平衡点的充分条件。鉴于四元数乘法的非交换特性,研究将四元数值神经网络系统分解为四个等价的实值神经网络系统。在此基础上,通过构造合适的Lyapunov函数,得到了系统全局µ稳定的充分条件。最终,通过数值仿真实验,验证了该系统的全局µ稳定性,从而证实了理论结论的有效性和准确性。This research investigates the globalµ-stability of a quaternion-valued CohenGrossberg neural network with time-varying delays.The study first introduces the concept of time-varying delays into the neural network model,thereby constructing a more precise model that reflects the dynamic characteristics of neurons.Subsequently,by applying the theorem of homeomorphism,the uniqueness of equilibrium points is discussed,and the sufficient conditions for the existence of a unique equilibrium point in the system are determined.In view of the non-commutativity property of quaternion multiplication,the quaternion-valued neural network system is decomposed into four equivalent real-valued neural network systems.On this basis,by constructing an appropriate Lyapunov function,the sufficient conditions for the globalµ-stability of the system are obtained.Finally,through numerical simulation experiments,the globalµ-stability of the system is verified,thereby confirming the effectiveness and accuracy of the theoretical conclusions.
关 键 词:四元数 µ稳定 COHEN-GROSSBERG神经网络 LYAPUNOV函数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49