基于多线激光雷达的系泊船舶姿态监测算法  

Attitude monitoring method of mooring ship based on multi-line LiDAR

在线阅读下载全文

作  者:郁威 曹民[1] 孙金余 吴绩伟 田进 黄秀松 YU Wei;CAO Min;SUN Jinyu;WU Jiwei;TIAN Jin;HUANG Xiusong(University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai International Port(Group)Co.,Ltd.,Shanghai 200080,China)

机构地区:[1]上海理工大学,上海200093 [2]上海国际港务(集团)股份有限公司,上海200080

出  处:《测绘通报》2024年第11期33-37,共5页Bulletin of Surveying and Mapping

基  金:上海市浦东新区科技发展基金社会领域数字化转型项目(PKS2022-28)。

摘  要:为实时监测集装箱船系泊装卸作业时的运动姿态,保障作业安全和提高作业效率,本文提出了近邻点云重心采样算法、基于距离阈值的经纬扫描边界提取算法和集装箱船姿态角算法,搭建仿真场景模型并建立了系泊集装箱船运动点云数据集用于算法效果验证。不同线数雷达仿真采集数据计算值与实际值对比表明,该算法能精确还原船舶运动历程,横、纵摇倾角测量误差均低于0.2°,且在有效范围内对点云密度不敏感,从而初步验证了该算法的有效性和可行性。本文可为集装箱船舶浮态及稳性的实时监测及预警提供数据支持。To achieve real-time monitoring of container ship mooring and loading/unloading operations,ensuring operational safety and enhancing efficiency,we introduce the near-neighbor point cloud center of gravity sampling algorithm,the warp/latitude scanning boundary extracting algorithm based on the distance threshold,and the attitude angle algorithm of container ship.Additionally,we construct a simulation scene model and establish a dataset of motion point clouds for moored container ships to validate the effectiveness of these algorithms.Comparison between calculated and actual values from simulated data collected by radars with varying line counts demonstrates the algorithm s accurate reconstruction of the ship s motion history.The measurement error for transverse/vertical rocking inclination is less than 0.2°,and the algorithm s sensitivity to point cloud density within the effective range is negligible.This initial validation confirms the algorithm s effectiveness and feasibility,offering data support for real-time monitoring and early warning systems for container ship buoyancy and stability.

关 键 词:激光雷达 点云处理 姿态监测 系泊船舶 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象