检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙勇 SUN Yong
机构地区:[1]南京审计大学,江苏南京211815
出 处:《信息技术与信息化》2024年第11期31-34,共4页Information Technology and Informatization
摘 要:在深度图像分类任务中,传统方法依赖于预训练的卷积神经网络(CNN)进行特征提取并结合标准分类损失函数进行训练。然而,数据集样本不足和特征表示不足会影响模型的分类性能。为解决这一问题,一种结合迁移学习和对抗生成网络(GAN)的创新方法被提出。首先,利用在大规模数据集上预训练的ResNet模型提取图像的高层特征,通过微调使其适应新的分类任务;然后,训练GAN生成高质量的图像数据,增强训练数据集的多样性,从而提升模型的泛化能力。实验在CIFAR-10和ImageNet数据集上进行,结果表明,结合迁移学习和GAN的方法显著提高了图像分类的准确性和鲁棒性。所提出的方法为解决数据样本不足问题提供了有效的解决方案。
关 键 词:图像分类 迁移学习 对抗生成网络 卷积神经网络 特征提取
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249