检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢滇楠[1] 党漾 王宏宁 黎叙锐 LU Dian-nan;DANG Yang;WANG Hong-yu;LI Xu-rui(Department of Chemical Engineering,Tsinghua University,Beijing,100084;Institute of Education,Tsinghua University,Beijing,100084;Department of Computer Science and Technology,Tsinghua University,Beijing,100084)
机构地区:[1]清华大学化学工程系,北京100084 [2]清华大学教育研究院,北京100084 [3]清华大学计算机科学与技术系,北京100084
出 处:《清华大学教育研究》2024年第5期89-98,共10页Tsinghua Journal of Education
基 金:国家自然科学基金面上项目“数智时代真实学习情境下高阶思维能力的形成机理及评价研究”(62277034);清华大学本科教育教学改革项目“新型教学场景的构建与应用研究”(DX08_04)。
摘 要:人工智能的快速发展持续驱动着教育教学模式的革新。当前生成式人工智能在高等教育领域的应用缺乏针对特定学科的垂直模型训练与系统化的课堂实践。本研究以清华大学“化工热力学”课程人工智能助教的建设与应用为例,介绍了生成式人工智能赋能特定学科课程教学的垂直模型训练与校准的方法,并使用课堂案例验证了所开发模型赋能教师教学和学生学习的有效性。研究发现,课程人工智能助教能够显著提高教师的备课效率与教学灵活性,并支持学生及时补齐知识短板、提出复杂问题的创造性解决方案。The rapid development of artificial intelligence continuously drives the revolution of teaching models and practices in higher education.However,the discipline-specific model training and systematic curriculum integration of generative AI in higher education still lack scientific research.Taking the“Chemical Thermodynamics”course at Tsinghua University as an example,this study introduces the construction and application of a discipline-specific AI teaching assistant,including methods for vertical model training and calibration and actual curriculum practice.The case study validates the effectiveness of the developed AI teaching assistant in enhancing both teaching and learning.The results show that the AI teaching assistant significantly improves teaching preparation efficiency and instructional flexibility and supports students in addressing knowledge gaps and providing creative solutions to complex problems.
分 类 号:G642[文化科学—高等教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.159.203