检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡立坤[1] 刘恒佳 王一飞 徐大也 王小勇 HU Li-kun;LIU Heng-jia;WANG Yi-fei;XU Da-ye;WANG Xiao-yong(School of Electric Engineering,Guangxi University,Nanning Guangxi 530004,China)
出 处:《控制理论与应用》2024年第12期2345-2355,共11页Control Theory & Applications
基 金:国家自然科学基金项目(61863002);广西科技计划项目(AB21220039)资助。
摘 要:为了解决稀疏立足点地形中六足机器人步态规划问题,本文提高规划时间效率、通过能力、抵达精度和运动速度,提出了一种双向并行蒙特卡洛树搜索算法(BPMCTS).将步态规划问题转化成马尔科夫序列优化过程,构建相向并行拓展蒙特卡洛树结构,搜索最佳立足位置形成步态序列;在模拟阶段搜索过程采用深度根并行化模拟方式,提高算法收敛速度;在奖励评估机制引入相遇评估指标,增强算法拓展导向性.仿真对比实验结果表明,所提算法规划时间效率提高46.9%,机器人通过能力提高7.7%,抵达精度提高32.6%,运动速度提高16.8%,验证了所提算法的可行性和优势性.To solve the gait planning problem of the hexapod robot in sparse foothold terrain,and improve the planning time efficiency,passing ability,arrival accuracy and motion speed,a bidirectional parallel Monte Carlo tree search algorithm(BPMCTS)is proposed.The gait planning problem is transformed into a Markov sequence optimization process.A bidirectional parallel extended Monte Carlo tree structure is constructed to search for the best base position and form gait sequences.In the simulation phase,the deep-root parallelization simulation method is adopted to improve the convergence speed of the algorithm.The encounter evaluation index is introduced in the reward evaluation mechanism to enhance the orientation of the algorithm.The results of simulation experiments show that the planning time efficiency increases by 46.9%of the proposed algorithm,the passing ability increases by 7.7%,the arrival accuracy increases by 32.6%and the motion speed increases by 16.8%of the robot,which verifies the feasibility and superiority of the proposed algorithm.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145