基于改进的YOLOv5s小目标船舶遥感图像检测  

Small Target Ship Remote Sensing Image Detection Based on Improved YOLOv5s

在线阅读下载全文

作  者:李志昂 肖小玲[1] 周绍发 LI Zhi-ang;XIAO Xiao-ling;ZHOU Shao-fa(School of Computer Science,Yangtze University,Jingzhou 434023,China)

机构地区:[1]长江大学计算机科学学院,荆州434023

出  处:《科学技术与工程》2025年第2期657-666,共10页Science Technology and Engineering

基  金:国家自然科学基金(61771354)。

摘  要:遥感图像中船舶目标具有多尺度特性、背景多变及气象复杂等特点,导致小目标船舶检测存在精度低,出现误检,漏检等情况。针对上述情况,提出了一种基于YOLOv5s的小目标船舶检测改进模型。首先,为解决船舶检测中尺度变化和背景多变问题,引入了适应空间特征融合(adaptive structure feature fusion,ASFF)模块,其次,为减少检测网络的计算量和参数量引入了BoTNet注意力机制,然后为提升网络整体的检测精确度,使用了EIoU边框损失函数,最后为保证网络整体的轻量化引入了Slim-neck颈部网络。实验显示,在主要数据集LEVIR-Ship上,相较于基准YOLOv5s,mAP@0.5提升了7.1%达到了81.3%,参数量降低了0.44 M,计算量降低了0.6GFLOPs,权重降低了0.9 M。本文方法在各项关键指标中表现更为优秀,实现了复杂环境下高精度的小目标船舶检测。在验证数据集McShips上进行对比实验。实验表明,本文方法依然表现更为优秀,验证了所提方法具有普适性。Ship targets in remote sensing images have multi-scale characteristics,changeable backgrounds,and complex meteorological characteristics,which lead to low accuracy,false detection,and missed detection of small target ships.In response to the above situation,an improved small-target ship detection model based on YOLOv5s was proposed.First,in order to solve the problems of scale changes and background variability in ship detection,the ASFF(adaptive spatial feature fusion)module was introduced.Secondly,in order to reduce the calculation amount and parameter amount of the detection network,the BoTNet attention mechanism was introduced,and then in order to improve the overall network to improve the detection accuracy,the EIoU border loss function was used,and finally the Slim-neck network was introduced to ensure the overall lightweight of the network.Experiments show that on the main data set LEVIR-Ship,compared with the benchmark YOLOv5s,mAP@0.5 increased by 7.1%to 81.3%,the number of parameters is reduced by 0.44 M,the calculation amount is reduced by 0.6GFLOPs,and the weight was reduced by 0.9 M.The proposed method performs better in various key indicators and achieves high-precision small target ship detection in complex environments.Comparative experiments are conducted on the verification data set McShips.The experiments show that the proposed method still performs better,verifying the universal applicability of the proposed method.

关 键 词:船舶检测 YOLOv5s 小目标检测 BoTNet注意力机制 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP751.1[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象