一体化减速电机参数辨识技术研究  

Research on Parameters Identification Technology of Integrated Deceleration Motors

在线阅读下载全文

作  者:李秋良 王智勇 刘鹏[1] 王延忠[1] LI Qiuliang;WANG Zhiyong;LIU Peng;WANG Yanzhong(School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China)

机构地区:[1]北京航空航天大学机械工程与自动化学院,北京100191

出  处:《新技术新工艺》2024年第11期39-45,共7页New Technology & New Process

摘  要:一体化减速电机具有结构简单、高能量密度、大减速比和控制精度高等特点,在工业机器人领域得到了广泛的应用。一体化减速电机作为工业机器人的关键驱动元件,在不同工况下其电机参数会发生实时变化,因此针对电机参数进行实时辨识对于提高控制系统的性能具有重要意义。通过分析递推最小二乘法的基本原理并结合RLS模型辨识了一体化减速电机的定子电阻和电感。研究显示,定子电阻的辨识精度为99.1%,q轴电感辨识精度能够达到97.1%,d轴电感的识别精度约为93%,在λ=0.995时的收敛速率已经足够且波动较小,RLS辨识的跟踪性能也较高,该方法具有较强的鲁棒性,为一体化减速电机参数辨识技术的研究提供了参考。The integrated deceleration motor had the characteristics of simple structure,high energy density,large speed reduction ratio,high control accuracy and so on,and it has been widely used in the field of industrial robots.As the key driving element of industrial robot,the motor parameters of integrated deceleration motor changed in real time under different working conditions.So the real-time identification of motor parameters was of great significance to improve the performance of the control system.We analyzed the basic principle of recursive least square method and identified the stator resistance and inductance of the integrated gear motor with RLS model.The research results showed that the identification accuracy of the stator resistance was 99.1%,the q-axis inductance identification accuracy could reach 97.1%,and the d-axis inductance identification accuracy was about 93%.Whenλ=0.995,the convergence rate was sufficient and the fluctuation was small,and the tracking performance of RLS identification was also high.This method had strong robustness,and it provided a reference for the research of integrated deceleration motor parameters identification technology.

关 键 词:一体化减速电机 工业机器人 参数辨识 RLS 鲁棒性 遗忘因子 

分 类 号:TM341[电气工程—电机] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象