基于融合改进A^(*)和动态窗口算法的叉车式AGV路径规划研究  

Research on Forklift AGV Path Planning Based on Fusion Improved A^(*)and Dynamic Window Algorithm

在线阅读下载全文

作  者:严小虎 邱亚峰[1] 田浩杰 李前位 刘康[1] YAN Xiaohu;QIU Yafeng;TIAN Haojie;LI Qianwei;LIU Kang(Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]南京理工大学,江苏南京210094

出  处:《机械制造与自动化》2025年第1期119-122,127,共5页Machine Building & Automation

基  金:国防预研基金项目(1171011485)。

摘  要:针对传统A^(*)算法和动态窗口算法在叉车式自主导航车(AGV)路径规划中搜索慢、冗余点多和灵活性差等问题,改进传统A^(*)算法和动态窗口算法;提出融合算法开展叉车式AGV的路径规划和避障研究,使其在规划全局路径的同时规划局部路径,实现兼具全局避障的最优路径规划。通过与4种算法的仿真实验结果对比,融合算法能够达到全局路径最优且轨迹平滑性最好,同等条件下能够减少5.73%路径长度和节约40.90%时间。For slow search,plenty redundancy points and poor flexibility of traditional A^(*)algorithm and dynamic window algorithm in forklift autonomous guided vehicle(AGV)path planning,the traditional A^(*)algorithm and dynamic window algorithm is upgraded,and the fusion algorithm is proposed to carry out the path planning and obstacle avoidance research of forklift AGV,so that the local path is planned while the global path is planned to realize the optimal path planning with global obstacle avoidance.The comparison conducted among the simulation results of the four algorithms shows that the proposed fusion algorithm can achieve the optimal global path and the best trajectory smoothness,with a reduction of path length by 5.73%and time saving by 40.90%under the same conditions.

关 键 词:AGV 路径规划 改进A^(*)算法 改进动态窗口算法 融合算法 

分 类 号:TH166[机械工程—机械制造及自动化] TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象