检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪书颖 张东霖 HONG Shuying;ZHANG Donglin(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China;Jiangsu Province Pattern Recognition Computational Intelligence Engineering Laboratory,Wuxi,Jiangsu 214122,China;Sino-UK Joint Laboratory of Artificial Intelligence,Ministry of Science and Technology,Wuxi,Jiangsu 214122,China)
机构地区:[1]江南大学人工智能与计算机学院,江苏无锡214122 [2]江苏省模式识别计算智能工程实验室,江苏无锡214122 [3]科技部中英人工智能联合实验室,江苏无锡214122
出 处:《计算机工程与应用》2025年第5期1-17,共17页Computer Engineering and Applications
基 金:国家自然科学基金(62202204);中央高校基本科研计划(JUSRP123032)。
摘 要:随着自动驾驶技术的迅猛发展,车道线检测作为其关键组成部分,引起了广泛关注,并在智能交通系统中展现出巨大的应用潜力。然而,在应对复杂环境挑战时,传统车道线检测技术往往难以提供足够的识别精度。回顾车道线检测技术的发展轨迹,系统性地梳理了84种先进算法,并创新性地根据语义处理方式划分为四类别:语义分割辅助类、语义信息融合类、语义信息增强类和语义关系建模类。通过深入剖析算法的技术特点和优势,揭示了当前车道线检测技术所面临的主要局限。最后,对未来车道线检测技术的发展方向提出见解,特别是在语义信息利用方面,指出了潜在的研究方向。With the rapid development of autonomous driving technology,lane line detection,as its key component,has attracted widespread attention and shown great potential for application in intelligent transportation systems.However,traditional lane line detection techniques usually struggle to provide satisfactory recognition accuracy when dealing with complex environmental challenges.This paper reviews the development of lane detection technology and systematically sorts out 84 advanced algorithms,and innovatively divides them into four categories based on semantic processing:semantic segmentation assistance,semantic information fusion,semantic information enhancement,and semantic relationship modeling.By deeply analyzing the technical characteristics and advantages of these algorithms,the main limitations of current lane line detection technology are revealed.Finally,the future development direction of lane line detection technology is put forward,especially in the utilization of semantic information,and the potential research direction is pointed out.
关 键 词:车道线检测 语义信息 自动驾驶 深度学习 计算机视觉
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49