超导磁浮列车明线与隧道内气动噪声仿真研究  

Simulation study of aerodynamic noise of superconducting maglev trains in open air and tunnels

在线阅读下载全文

作  者:贺义 杨成 杨志刚[2,3,4] 袁思齐[2,3,4] 卢鑫源[2,3,4] HE Yi;YANG Cheng;YANG Zhigang;YUAN Siqi;LU Xinyuan(CRRC Changchun Railway Vehicles Co.,Ltd.,Changchun 130000,China;School of Traffic&Transportation Engineering,Central South University,Changsha 410075,China;Joint International Research Laboratory of Key Technologies for Rail Traffic Safety,Central South University,Changsha 410075,China;National&Local Joint Engineering Research Center of Safety Technology for Rail Vehicle,Central South University,Changsha 410075,China)

机构地区:[1]中车长春轨道客车股份有限公司,吉林长春130000 [2]中南大学交通运输工程学院,湖南长沙410075 [3]中南大学轨道交通安全关键技术国际合作联合实验室,湖南长沙410075 [4]中南大学轨道交通列车安全保障技术国家地方联合工程研究中心,湖南长沙410075

出  处:《铁道科学与工程学报》2025年第2期485-495,共11页Journal of Railway Science and Engineering

基  金:中国国家铁路集团有限公司科技研究开发计划课题(P2019J008);中车长春轨道客车股份有限公司技术服务项目(9600009576)。

摘  要:超导磁浮列车运行时马赫数接近0.5,气动噪声占据主导地位,当列车全速穿越隧道时,其近壁面气动激扰急剧增加。基于大涡模拟和N-S方程,对600 km/h超导磁浮列车在明线及横截面积79 m~2的隧道工况下进行数值模拟研究,分析列车近壁面流场扰动结构、车体表面气动噪声源分布及车内噪声在明线、隧道工况下的差异。结果表明:明线、隧道工况下超导磁浮列车周围的气动激扰主要分布在列车车顶两侧,尾车流线型与尾流区,隧道工况下列车周围与尾流区的气动激扰显著增强;明线与隧道工况下偶极子噪声源较强的区域主要位于超导线圈后方、中车车顶两侧及尾车流线型区域,隧道工况下列车各部件等效声源声功率增长幅度不一致,中车1~6、尾车非流线型及尾车流线型等效声源声功率较明线工况增长幅度依次约为7.8倍、8.3倍、10.27倍、8.8倍、12.15倍、12.19倍、7.68倍、12.03倍;整车与不同部件等效声源声功率频谱曲线均表现出宽峰特征,隧道工况下列车在全频段,尤其是125~5 000 Hz范围内的偶极子噪声能量较明线工况显著增加,表面声源声功率峰值频率增大,隧道工况下160 Hz离散次峰的偶极子噪声主要源于轨道凹腔内气动激扰冲击车底而产生的表面脉动压力。受活塞效应影响,相较于明线工况,超导磁浮列车隧道工况下车内噪声水平显著提升,明线、隧道工况下最大车内噪声均在尾车区域获得,车内噪声峰值依次为82.5 dB(A)、97.7 dB(A)。研究成果为隧道工况下超导磁浮列车气动声学优化设计提供了参考。Superconducting maglev trains operate at Mach number close to 0.5,and aerodynamic noise dominates.When the train passes through the tunnel at full speed,the aerodynamic excitation on its near-wall surface increases dramatically.Based on large eddy simulation and N-S equation,a numerical simulation study was conducted for a 600 km/h superconducting maglev train in open air and a tunnel with a cross-sectional area of 79 m2,to analyze the disturbance structure of the near-wall flow field of the train,the distribution of aerodynamic noise sources on the body surface,and the differences in interior noise under open air and tunnel conditions.The results show that:the aerodynamic disturbances around the superconducting maglev train under open air and tunnel conditions are mainly distributed on both sides of the train roof,as well as the streamline and wake zones of the tail car,and the aerodynamic disturbances around the train and the tail flow area are significantly enhanced under tunnel condition.The areas with stronger dipole noise sources under open air and tunnel conditions are mainly located behind the superconducting coils,on both side of roof of the mid-vehicle,and in the tail car streamline area.The equivalent sound source of each component of the train is significantly enhanced under tunnel condition.Under tunnel condition,the increase in equivalent sound power of each part of the train is not consistent.The growth of equivalent sound power of the middle car 1~6,non-streamlined tail car and streamlined tail car is about 7.8 times,8.3 times,10.27 times,8.8 times,12.15 times,12.19 times,7.68 times,12.03 times,respectively,as compared to that under open line condition.The spectral curves of the whole train and different parts show broad peaks,while the tunnel condition shows broad peaks.Under tunnel conditions,the dipole noise energy in the whole frequency band,especially in the range of 125~5000 Hz,increases significantly as compared to the open air conditions,and the peak frequency of the surface sound power in

关 键 词:大涡模拟 超导磁浮列车 气动噪声 隧道 明线 

分 类 号:U292.917[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象