基于改进UKF的无人机对地机动目标跟踪  

Ground target tracking with UAV based on improved adaptive UKF

作  者:贾大成 张民[1] 肖贵华 JIA Dacheng;ZHANG Min;XIAO Guihua(College of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学自动化学院,南京211106

出  处:《导航定位与授时》2025年第1期29-37,共9页Navigation Positioning and Timing

基  金:国家自然科学基金(62273178)。

摘  要:针对无人机在跟踪地面机动目标时,目标的机动导致无法得到准确的目标状态信息的问题,以无迹卡尔曼滤波(UKF)算法为基础,结合交互多模型(IMM)算法与强跟踪滤波器的思想,提出了一种基于IMM的强跟踪无迹卡尔曼滤波(IMM-STUKF)算法的无人机对地目标状态估计算法。仿真表明,在无人机飞行速度约30 m/s、目标速度约7 m/s、角度与距离量测误差分别为1°和15 m时,相较于IMM-UKF,基于IMM-STUKF的无人机对地机动目标位置估计精度提升了约10%,速度估计误差降低了约50%。Aiming at the problem that the UAV cannot obtain accurate target state information due to the maneuvering of the target when tracking the ground maneuvering target,based on the unscented Kalman filter(UKF)algorithm,by integrating the concepts of the interacting multiple model(IMM)algorithm and the strong tracking filter,a UAV ground target state estimation algorithm based on the interacting multiple model strong tracking unscented Kalman filter(IMM-STUKF)is proposed.The simulation shows that when the UAV flight speed is about 30 m/s,the target speed is about 7 m/s,and the angle and distance measurement errors are 1°and 15 m respectively,compared with IMM-UKF,the UAV ground maneuvering target position estimation accuracy based on IMM-STUKF is improved by about 10%,and the speed estimation error is reduced by about 50%.

关 键 词:无人机 目标跟踪 自适应无迹卡尔曼滤波 强跟踪滤波 

分 类 号:V279[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象