基于优化人工势场法的无人驾驶汽车路径规划研究  

Research on Path Planning of Driverless Vehicle Based on Optimized Artificial Potential Field Method

在线阅读下载全文

作  者:王志强 郑竹安[1] 叶子墨 郑祥雨 谢双健 喻志伟 WANG Zhiqiang;ZHENG Zhu'an;YE Zimo;ZHENG Xiangyu;XIE Shuangjian;YU Zhiwei(School of Automotive Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China)

机构地区:[1]盐城工学院汽车工程学院,江苏盐城224051

出  处:《盐城工学院学报(自然科学版)》2024年第3期65-72,共8页Journal of Yancheng Institute of Technology:Natural Science Edition

摘  要:针对传统人工势场法在车辆路径规划中存在目标不可达、局部最优等问题,通过优化障碍物模型对传统人工势场算法进行了优化,提高所规划路径的准确性和平滑性;然后结合模型预测控制算法对无人驾驶汽车行驶规划路径进行跟踪验证。结果表明:优化后的模型可以生成一条准确平滑的路径;模型预测算法可以较准确地实现轨迹跟踪,即在换道工况时轨迹跟踪误差小于0.20 m,在理想误差范围之内,超车工况下的跟踪误差为-0.4~0.6 m,既可以实现较为理想地超车,又能保证车辆行驶的稳定性、安全性。The traditional artificial potential field method has some problems in vehicle path planning,such as unattainable target and local optimization.The traditional artificial potential field algorithm is optimized by optimizing the obstacle model to improve the accuracy and smoothness of the planned path.Then combined with the model predictive control algorithm,the driving plan⁃ning path of driverless car is tracked and verified.The results show that the optimized model can generate an accurate and smooth path.The model prediction algorithm can accurately realize trajectory tracking,that is,the trajectory tracking error is less than 0.20 m under lane changing conditions,and within the ideal error range,the tracking error under overtaking conditions is-0.4~0.6 m,which can not only achieve ideal overtaking,but also ensure the stability and safety of vehicle driving.

关 键 词:人工势场法 路径规划 无人驾驶汽车 模型预测算法 

分 类 号:U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象