检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵玉清 焦雨杰[1,3,4] 李宏 王天允 李嘉舜 张悦 Zhao Yuqing;Jiao Yujie;Li Hong;Wang Tianyun;Li Jiashun;Zhang Yue(Faculty of Mechanical and Electrical Engineering,Yunnan Agricultural University,Kunming,650201,China;Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming,650093,China;Yunnan Key Laboratory of Coffee,Kunming,650201,China;Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province,Kunming,650201,China;College of Big Data,Yunnan Agricultural University,Kunming,650201,China)
机构地区:[1]云南农业大学机电工程学院,昆明市650201 [2]昆明理工大学交通工程学院,昆明市650093 [3]云南省咖啡重点实验室,昆明市650201 [4]云南省作物生产与智慧农业重点试验室,昆明市650201 [5]云南农业大学大数据学院,昆明市650201
出 处:《中国农机化学报》2025年第4期194-203,共10页Journal of Chinese Agricultural Mechanization
基 金:云南省重大科技专项计划项目(202302AE0900200105);云南省科技厅科技计划农业联合专项(202301BD070001-105);云南省教育厅科学研究基金项目(2023Y0986);云南省咖啡重点实验室(202449CE340030)。
摘 要:针对目前咖啡豆存在分级困难、识别准确率低的问题,提出一种融合注意力机制的ShuffleNet V1咖啡豆分级模型(ECA—ShuffleNet MLP)。模型以ShuffleNet V1为主干网络,删去输入层的最大池化层,在ShuffleNet Unit第二个普通卷积后加入ECA注意力机制,同时添加一个多层感知器模块(MLP)作为分类头,并采用Fusion Loss作为损失函数。相比AlexNet、VGG16、MobileNet V1、MobileNet V2、ResNet34和ResNet50模型,在自建咖啡豆数据集上的试验结果表明:ECA—ShuffleNeMLP模型的咖啡豆分级平均准确率为97.84%,分别提高8.49、5.41、3.85、2.71、4.16和3.20个百分点。在公开咖啡豆数据集上的试验结果表明:ECA—ShuffleNet MLP模型分级平均准确率分别提高3.75、1.00、10.00、2.75、0.08和1.25个百分点。在自制咖啡豆分级分拣试验平台上的试验结果表明:当输送带运行速度为50 mm/s时,识别准确率和抓取成功率为84.00%和82.67%。ECA—ShuffleNet MLP模型具有分级准确率高和模型轻量化的优点,易于部署在硬件设备上,具有较好的泛用性。Aiming at the current problems of grading difficulties and low recognition accuracy of coffee beans,a ShuffleNet V1 coffee bean grading model(ECA—ShuffleNet MLP)incorporating attention mechanism is proposed.The ECA—ShuffleNet MLP model uses ShuffleNet V1 as the backbone network,deletes the maximum pooling layer in the input layer,adds the efficient channel attention(ECA)mechanism after the second ordinary convolution of the ShuffleNet Unit,and finally adds a multi-layer perceptron module(MLP)as a classification head and Fusion Loss as a loss function.The experimental results on the self-constructed coffee bean dataset show that the average accuracy of the ECA—ShuffleNe MLP model for grading coffee beans was 97.84%,which compared to the AlexNet,VGG16,MobileNet V1,MobileNet V2,ResNet34,and ResNet50 models,improved by 8.49,5.41,3.85,2.71,4.16,and 3.20 percentage points.Experimental results on the publicly available coffee bean dataset show that compared to the above models,the ECA—ShuffleNet MLP model graded average accuracy improved by 3.75,1.00,10.00,2.75,0.08,and 1.25 percentage points.The experimental results on the homemade coffee bean grading and sorting test platform show that the recognition accuracy and grasping success rate are 84.00%and 82.67%when the conveyor belt running speed is 50 mm/s.The ECA—ShuffleNet MLP model has a good grading accuracy and light weight,and it is easy to be deployed on hardware devices with good generalizability.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS273[自动化与计算机技术—计算机科学与技术] S571.2[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7