汽车半主动空气悬架控制器BP-PID设计及验证  

Design and Verification of Automobile Semi-Active Air Suspension Controller Based on BP-PID

在线阅读下载全文

作  者:郑世界 徐延海[2] 辛乐 ZHENG Shijie;XU Yanhai;XIN Le(College of Automotive Engineering,Chengdu Polytechnic Institute,Sichuan Chengdu 610018,China;School of Transportation and Automotive Engineering,Xihua University,Hubei Huanggang 610039,China;FAW-Volkswagen Chengdu Branch,Jilin Fuyu 610100,China)

机构地区:[1]成都工业职业技术学院汽车工程学院,四川成都610018 [2]西华大学交通运输与汽车工程学院,湖北黄冈610039 [3]一汽大众成都分公司,吉林扶余610100

出  处:《机械设计与制造》2025年第4期229-232,236,共5页Machinery Design & Manufacture

基  金:四川省教育厅自然科学重点项目(18ZA0029)。

摘  要:汽车悬架控制中常规PID控制器的准确性并不理想,与实际应用需求存在一定的偏差。为此提出一种基于BP神经网络的新型PID控制方法,成功应用于汽车半主动空气悬架控制器上。利用神经网络实现悬架PID控制器的在线整定,并进行快速近似和自动学习。在Matlab/Simulink平台开展了路面模拟信号验证分析,研究结果表明:采用LQG控制器无法实现与模拟程序相同的控制效果,而BP-PID悬挂能够使车体加速度减小80%左右,整车平顺性也得到明显改善。相比较LQG系统,BP-PID对车辆的控制能够获得±1500N变化幅度,具有更好鲁棒性和更强非线性响应能力。该研究的BP-PID控制悬架更满足节能环保的控制要求,提高乘坐的舒适效果,具有很高的推广价值。The accuracy of conventional PID controller in automobile suspension control is not ideal,and there is a certain devia⁃tion from the practical application requirements.Therefore,a new PID control method based on BP neural network is proposed,which is successfully applied to the semi-active air suspension controller of automobile.Neural network is used to realize the online tuning of suspension PID controller,and fast approximation and automatic learning are carried out.The results show that the LQG controller can not achieve the same control effect as the simulation program,while the BP-PID suspension can reduce the acceleration of the vehicle body by about 80%,and the vehicle ride comfort is also significantly improved.Compared with LQG system,BP-PID can control the vehicle with±1500N variation amplitude,which has better robustness and stronger nonlinear re⁃sponse ability.The BP-PID control suspension in this study can better meet the control requirements of energy saving and environ⁃mental protection,improve the ride comfort effect,and has high popularization value.

关 键 词:汽车悬架 神经网络 PID控制器 仿真 随机路面 

分 类 号:TH16[机械工程—机械制造及自动化] TH137

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象