检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2003年第1期119-121,共3页Journal of System Simulation
摘 要:支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,该文利用支持向量机对非线性系统进行黑箱建模,介绍了v-SVR的基本理论,并进行了仿真实验,结果验证了所提出的方法的正确性和有效性。Support vector machine is a learning technique based on the structural risk minimization principle, and it is also a class of regression method with good generalization ability. This paper uses support vector machine to model nonlinear dynamical systems, and briefly describes the theory of v-SVR. A simulation example is taken to demonstrate correctness and effectiveness of the proposed approach.
关 键 词:支持向量机 非线性系统 统计学习理论 回归估计 系统辨识
分 类 号:O231.3[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222